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Introduction

At this point, we have only focus on the Stationary Equilibrium.

e Many questions involve solving the model beyond the Steady-State Stationary Equilibrium.

Aggregate Uncertainty:

» How the Aiyagari economy reacts to aggregate shocks.
» Does heterogeneity matters to the business cycles?

Transitions Dynamics:

» How long it takes to the economy reach a new steady state after an economic reform.
» How to compute the transition from one steady state to another.

2/65



References

e Krueger, Mitman and Perri (2016, Handbook of Macro)*: Application of the model to the
great recession.

e Boppart, Krusell and Mitman (2018, JEDC)*: Intuitive paper on how transition dynamics
can be used to simulate aggregate shocks (+ history about the MIT shocks).

e Auclert, Bardéczy, Rognlie and Straub (2021, ECTA)*: State-of-the-art method to solve
HA models with aggregate uncertainty.

e Krusell and Smith (1998, JPE): original paper outlining the famous algorithm.

e Heer and Maussner (2009): Ch. 8 and 10; Fehr and Kindermann (2019): Ch. 11:
Textbook treatment of the computational methods.

e Algan et al (2014, Handbook of Computational Economics): Entire handbook on how to
solve HA economies with aggregate uncertainty. See also their special edition on the JEDC.

3/65


https://www.sciencedirect.com/journal/journal-of-economic-dynamics-and-control/vol/34/issue/1

Krueger, Mitman and Perri (2016, Handbook of Macro)

Question: How important is household heterogeneity for the amplification and
propagation of macroeconomic shocks?

Focus on the US Great Recession of 2007-09.

Heterogeneity: earnings, wealth, and household preferences.

Consequences for cross-sectional inequality in disposable income and consumption
expenditures.
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Krueger, Mitman and Perri (2016, Handbook of Macro)

Method:

e Summarize empirical facts about the joint distribution of income, wealth, and consumption
before and during the great recession.

e Compute various versions of the HA model with aggregate uncertainty and study its
cross-sectional and dynamic properties.

» Simple version of the model “replicates” the results of representative agent model.

» Model extension with life-cycle, unemployment insurance and social security does a much
better job.

e Study the impact of social insurance policies.
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Empirical Evidence: Levels

e Data: PSID (2004, 2006, 2008, and 2010). New version covers income, wealth, and
consumption.

Table 2 PSID Households across the net worth distribution: 2006

% Share of: % Expend. Rate Head’s
NW Q Earn. Disp. Y Expend. Earn. Disp. Y Age Edu. (yrs)
Q1 9.8 8.7 11.3 95.1 90.0 39.2 12
Q2 12.9 11.2 12.4 79.3 76.4 40.3 12
Q3 18.0 16.7 16.8 77.5 69.8 42.3 12.4
Q4 22.3 221 22.4 82.3 69.6 46.2 12.7
Q5 37.0 41.2 37.2 83.0 62.5 48.8 13.9

Correlation with net worth
0.26 0.42 0.20
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Empirical Evidence: Changes

Table 3 Annualized changes in selected variables across PSID net worth

Net worth® Disp. Y (%) Cons. Exp.(%) Exp. Rate (pp)
(1) (2) (3) (4) (5) (6) (7) (8)
04-06 06-10 04-06 06-10 04-06 06-10 04-06 06-10
All 15.7 44.6 —-3.0 -10 4.1 1.2 5.6 -13 09 -1.6
NW Q
Q1 NA 12.9 | NA 6.6 | 7.4 6.7 7.1 0.6 —0.2 —4.2
Q2 121.9 19.5 | 24.4 3.7 16.7 41 7.2 2 0.3 —-1.3
Q3 329 | 236 4.3 33 |51 1.8 9 0 2.3 —1.1
4 17.0 | 34.7 1.7 3.8 |5.0 1.7 5.9 —1.5 0.5 —2
Q5 116 | 1322 | —49 | —68.4 | 1.8 —1.2 2.7 3.5 0.5 —1.4

"The first figure is the percentage change (growth rate), the second is the change in 000’s of dollars.

e Last column: saving rates increase relatively more for wealth-poor households during the

recession.
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A Business Cycle Model with HH Heterogeneity

Ingredients:

e Idiosyncratic individual shocks + incomplete markets a la Aiyagari-Hugget.

Aggregate Shocks in the spirit of the Real Business Cycle literature.

2 stages life cycle: young (workers) and old (retiree).

Ex-ante heterogeneity in §.

e Government policy: unemployment insurance and social security.
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Production Technology

Aggregate production function is Cobb-Douglas over capital and labor:
Y = Z*KoN'~ (1)

e 7*=7C%, where w > 0.

Aggregate shock: Z follows a 2-state Markov with transition matrix 7(Z'|Z):

» Ze{Z,Zy}. Z;: recession, Zp, : normal times.
e Demand externality: C¥

» If w = 0, standard neoclassical production function.
» If w > 0, production is partially determined by demand.
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Households

e Standard utility over consumption u(c), they cannot borrow, a’ > 0.

e Ex-ante and fixed heterogeneous discount factor 8 € B.

e Two idiosyncratic states:
» Employment: s € {e,u}. Transition matrix depends on aggregate state: 7 (s'|s, Z’, Z).
» Income: ~. Transition matrix is independent of the aggregate state: m(v'|y).

e Stochastic life cycle:

» households are born as workers and with probability 1 — 6 they retire;
» after retiring, they receive pensions and with probability 1 — v they die.
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Government Policy

Pensions and unemployment benefits are financed using proportional labor taxes.

e Government runs a balance budget system every period.

e Unemployment insurance:
» Pays a fraction p € [0, 1) of the household potential income: b = pw~.
» Financed with tax rate, 7(Z). The tax adjusts to maintain the budget balanced. In
recessions, the tax rate increases.
e Pension benefits:

» Financed with a fixed social security contribution 7.
» Pension benefits, b,,, adjust to maintain the budget balanced. In recessions, the pension
decreases.
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Household Bellman Equation: Retiree

z'ez
s.t c+ad =bgs(Z,9)+ (1 +7r(Z,®) —8)a/v
& = H(Z,®,7)

(BZ@)—maX{ )+ vB Y. (2 Z)Vr(a ,B;Z’,fb’)}

where @ is the distribution of agents in the economy.

e Individual state: (a,3), aggregate state: (Z, ®).

e H(): Rational expectations function. The agents correctly forecast the next period
distribution, given the state of the economy.
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Household Bellman Equation: Worker

V@@v%aM%ZZ¢)=In%%{{U@)+B >, wZNDn(sls 2 Z)n(y 1)
oo (2,8 A)E(Zys,7)

X [HVW(S/7 7/7 CL/, /87 Zlv (b/) + (1 - G)VR(S,a ’y/v ala /87 Zla q)/)]}

s.t ctd =1 —-7(2) = 155)yw(Z,®)[1 — (1 — p)ls—y] + (1 +7(Z,®) — d)a
o' = H(Z,8,2')

e Individual state: (a,s,~, ), aggregate state: (Z,®).

e Employed earnings: yw; unemployed earnings pyw.
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Equilibrium

e Prices are given by FOCs of firm'’s problem:

w(Z,®) = Za (KJéf;f))l_a and  (Z,®)=2(1-«a) (%)a

where aggregate employment N (Z) is given by the distributions of the Markov process
(which depends on 7).

e Asset market clears:
K(Z,®) = /ad(I)

e The distribution evolves according to the function: ®' = H(Z, ®, Z"). In equilibrium, this
function is consistent with the individual decisions.
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Digression: Krusell & Smith (1998)

e Because prices are allowed to vary over the cycles and they are needed for the household
problem: the aggregate state, (Z, ®), is part of the state of the HH.

e Problem: the distribution, @, is a high-dimensional object and the state space increases
substantially.

e Krussel & Smith (1998): instead of using the entire distribution, just use some

moments of the distribution:

» Households are “boundedly rational” on how the distribution evolves.
» In this class of models, the mean is enough to correctly forecast prices:

®=H(Z®,7) = K =HZK,DZ) ()
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Digression: Krusell & Smith (1998)

e Substitute ® by K. Example:

( /8 Z K)_ max { +V5 Z Z’Z VR >B;Z/7K/)}

c, a’>0 Jrey
s.t c+ad =bss(Z,K)+(14+7r(Z,K)—6)a/v
K' = H(Z K, Z')

e Intuition: the mean of ® works well to forecast prices because the savings policy function
is approximately linear.

e For more complex models, one may need higher moments.
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Back to Krueger, Mitman and Perri: Models

Table 5 Taxonomy of different versions of the model used in the chapter

Name Discounting Techn. Soc. Ins.
KS pB=p @ =10 p=1%
Het. f ﬂE[B—EB'FE] w =10 p =50%
Het.ﬁ [)’E[E—CBJr(] =10 p=10%
Dem. Ext. pe [ﬁ—(ﬁ+(] @ >0 p =50%

e KS: Basic model, very similar to Krusell-Smith (1998);

e Benchmark model: second row, calibrated to match the US economy.
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Calibration

Model calibrated to quarterly data. o = 0.36, 6 = 0.025, u(c) = log(c).

Z duration and GDP drop of a “severe recession”.

s separation and job-finding rates, v comes from a persistent-transitory process estimated
from PSID.

0, v: a working period of 40 years and a retirement period of 15 years.

B from uniform distribution: match Gini for the wealth distribution.

Policy: unemployment benefits of 50%, p = 0.5. Pension of 40% of avg. wage.
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Evaluating the Model: Wealth Distribution

Table 6 Net worth distributions: Data vs models

Data Models
% Share held by: PSID, 06 SCF, 07 Bench KS
Q1 —-0.9 —-0.2 0.3 6.9
Q2 0.8 1.2 1.2 11.7
Q3 4.4 4.6 4.7 16.0
Q4 13.0 11.9 16.0 22.3
Q5 82.7 82.5 77.8 43.0
90-95 13.7 11.1 17.9 10.5
95-99 22.8 253 26.0 11.8
T1% 30.9 33.5 14.2 5.0
Gim 0.77 0.78 0.77 0.35

e Benchmark matches the wealth distribution; but fails in the top 1%. KS fails.
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Evaluating the Model: Joint Distribution

Table 8 Selected variables by net worth: Data vs models

% Share of:

% Expend. rate

Earnings Disp. Y Expend. Earnings Disp. Y
NWQ Data Mod Data Mod Data Mod Data Mod Data Mod
Q1 9.8 6.5 8.7 6.0 11.3 6.6 95.1 96.5 |90.0 90.4
Q2 12.9 11.8 11.2 10.5 12.4 11.3 79.3 90.3 |76.4 86.9
Q3 18.0 18.2 16.7 16.6 16.8 16.6 77.5 86.0 |69.8 81.1
Q4 22.3 25.5 221 24.3 22.4 23.6 82.3 873 169.6 78.5
Q5 37.0 38.0 41.2 42.7 37.2 42.0 83.0 1045 |625 79.6
Correlation with net worth
0.26 0.46 0.42 0.67 0.20 0.76

e Qualitatively close to the data, but quantitative a bit far; wealth poor consuming too little,
and the wealth rich consuming too much.
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Evaluating the Model: Dynamics in Normal Times

Table 9 Annualized changes in selected variables by net worth in normal times (2004-06): Data vs

model

Net worth (%) Disp. Y (%) Expend (%) Exp. Rate (pp)
NW Q Data Model Data Model Data Model Data Model
Q1 NaN 44 7.4 7.2 7.1 6.7 —0.2 —0.4
Q2 122 33 6.7 3.1 7.2 3.6 0.3 0.5
Q3 33 20 5.1 1.6 9 2.5 2.3 0.8
Q4 17 9 5 0.5 5.9 1.7 0.5 1.2
Q5 12 3 1.8 —1.0 2.7 0.5 0.5 1.4
All 16 5 4.1 0.7 5.6 1.8 0.9 0.7

e Slightly too much downward and upward mobility on income, but in general good job.
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Evaluating the Model: Dynamics in Recession

Table 10 Annualized changes in selected variables by net worth in a severe recession: Data vs model

Net worth (%) Disp. Y (%) Expend. (%) Exp. rate (pp)
NW Q Data Model Data Model Data Model Data Model
Q1 NaN 24 6.7 4.9 0.6 4.5 —4.2 —0.4
Q2 24 15 4.1 0.3 2.0 1.2 —-1.3 0.8
Q3 4 8 1.8 —2.4 0.8 0.0 —1.1 2.2
Q4 2 4 1.7 —4.0 —-1.7 —-1.5 —-2.0 3.2
Q5 -5 -1 —-1.2 —6.4 —-3.7 -35 —-1.4 4.6
All -3 1 1.2 —3.7 —1.3 —0.8 —1.6 2.0

e Consumption-savings in the recession: | savings because of consumption smoothing; 1

savings because of precautionary savings.

> In the model: the first is stronger for the richer, but the latter is stronger for the poorer.
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Aggregate Shock: Krusell-Smith vs Representative Agent

e The Krusell-Smith economy is
remarkably similar to the

representative agent in the aggregate.

e Intuition: without too many
constrained agents, the HA economy
behaves as a RA.
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Fig. 3 Impulse response functions (IRF) to aggregate technology shock in KS and RA economigss 5



Aggregate Shock: All models

e Benchmark generates a larger drop in
consumption than KS economy.
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e Largely accounted by income risk on
top of employment risk.

0.98

e Recall that benchmark economy has 0.975
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Differences between KS and Benchmark Economy
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Fig. 5 Consumption function and wealth distribution

panel).

e Benchmark generates a larger drop in consumption because it has a larger share of low

wealth households.

e The low wealth consumes more in the benchmark because of unemployment benefits.
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: Krusell-Smith (left panel) and benchmark (right
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The Role of Unemployment Insurance
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Fig. 10 Consumption function and wealth distribution: Benchmark (left panel) and low Ul (right panel).

e Unemployment benefits help the low wealth poor to consume in bad times.

e Aggregate consumption falls much more in recessions without Ul.
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Demand Externality
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Fig. 14 Impulse response to identical aggregate technology shock: Comparison between economies
with and without demand externality.
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Conclusion: Krueger, Mitman and Perri

e Simple heterogeneity a la Krusell-Smith/Aiyagari is not enough to generate differences
from the representative agent model.

e Other ingredients should be added to get a meaningful wealth distribution.
e Low wealth agents are key to getting the larger fall in consumption.
e Unemployment insurance attenuates the fall of aggregate consumption.

e Demand externality further increases the recession: motivation to include a proper
microfoundation of the demand effect.
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Where to go now?

e Income Risk and Business Cycles: Bayer et al (2019, ECTA), McKay (2017, JME).

e Search Frictions and Unemployment: Ravn and Sterk (2017, JME), Nakajima (2012,
JME; 2012, IER).

e Precautionary Savings over the Cycles: Challe and Ragot (2016, EJ), Heathcote and
Perri (2017, ReStud).

e Credit Crunch and Housing: Guerrieri and Lorenzoni (2017, QJE), Kaplan, Mitman and
Violante (2020, JPE).

e Automatic Stabilizers: McKay and Reis (2017, ECTA; 2021, ReStud).

e Trends in Inequality: Heathcote et al (2010, JPE), Heathcote, Perri and Violante (2020,
RED).

e Transition dynamics of all questions we saw before.
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Computational

e To solve a heterogeneous agent economy with aggregate uncertainty the main methods

are:
» Krusell-Smith (1998, JPE) bounded rationality algorithm.
» MIT shock (Boppart, Krusell and Mitman, 2018, JEDC).

» Reiter (2009, JEDC) Method.

» Auclert, Bardéczy, Rognlie and Straub (2021, ECTA) sequence space Jacobian.

e There are others/variations of algorithms. Check Algan et al (2014).
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Krusell-Smith Algorithm

References: Krusell-Smith's original paper is easy to follow. Check also Nakajima's notes.

Krusell-Smith: use some moments finite moments instead of the entire distribution.
> In the model we saw before just the mean is enough: K' = H(Z, K, Z").

e Approximate the function forecasting function H () with a log-linear form:

log K' = a; +blog K if Z=2
log K' = ap +bylog K if Z =2,

We have to find the parameters: (a;, ap, by, by).
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Krusell-Smith Algorithm

Discretize the state space: (a, s, K, Z). Recover the prices (K, Z) and w(K, Z) for each state
space using the firm's problem.

(i) Guess the parameters of the forecast function: (af,a),b?,b9).

(i) Given (a?,a?,b?, b)), solve the Bellman Equation of the HH for all the state space
(a,8,K, 7).

(iii) Given the household policy functions, simulate T periods:

» Draw a sequence of Z; for all T'. Guess a initial distribution ®.
» Using the policy function and the sequence Z;, keep updating the distribution ®; forward.
» Compute the mean of the distribution K; (and other moments if necessary).

» Drop the first T;) periods. Now, we have a sequence {Z;, Kt}f:TO.
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Krusell-Smith Algorithm

(iv) Using the sequence {Z;, Kt}tT:T(,' run a linear regression and recover the new coefficients:
(af, aj,, by, b,).

(v) Check the distance between the guess a®,b° and the new parameters a',b'. If it is smaller
than tol, we are done. Otherwise, update the guess and start again:

a® = xa® + (1 — Vet
b0 = 0% 4 (1 — A

where A € (0,1) is a damping parameter.
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Krusell-Smith Algorithm: Issues

After you finish, you must check the R? of the forecast regression. If the R? is low, you
must add more moments or change the function form.

» In Krusell-Smith, R? = 0.999, so the perceived law of motion of K is very close to the actual
law of motion.

Poor initial guesses might not converge. One good guess is a = log K5 and b = 0.

Good: KS captures potential non-linearities and large shocks. For instance, asymmetries
between the boom and the recession; uncertainty shocks; etc.

Bad: KS can be inaccurate if there are explicitly distributional channels coming from the
top of the wealth distribution. Potentially very slow.
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Reiter Method

Perturbation Methods:
» Generalization of the well-known linearization around the steady state.
» Often used to solve representative agent models.
» They tend to be fast, but require derivatives and some stability conditions (Blanchard-Kahn).

Standard software (i.e., dynare) uses this method.

Reiter (2009) propose to solve for the stationary equilibrium using global methods
(projection methods), and then use perturbation methods to solve for the aggregate shock.

If you need a refresher on Pertubation methods, check Fernandez-Villaverde's notes.
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Reiter’'s Method

e We can write the solution of DSGE models as a nonlinear system of difference equations:

EtF(ﬂCt, Tt+1, Yt yt+1) =0 (3)

where z is the vector of predetermined variables (state), y is nonpredetermined variables
(control).

e Then, we can linearize the system (either numerically or analytically) and use methods to
solve the linear system of difference equations:

» Blanchard and Kahn (1980); Uhlig (1999); Sims (2000); Rendahl (2018).
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Reiter’'s Method

e Example: Stochastic Neoclassical Growth model

0;7 — ﬂEtc;Yl [akf‘_;ll +1-9]
EiF (2, 21, Y, Y1) = By | e + kepr — ¥k — (1 —0)ky | =0
Zt+1 — P2t — O&¢4+1

where x = [k, 2] and y = [].

e First row is the Euler Equation, second is the feasibility constraint, and the last is the
stochastic process of the shock.
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Reiter’'s Method

e Example: Krusell-Smith economy.

d®ii1 — dq)tﬂgw
Vi — (ﬂga,t + ﬁHga,tV;H-l)

Zt+1 — PRt — O&¢41
ED(ga,u d®y, 2, Pt)

EyF(xg, 241, Y, Yey1) = By

where z = [d®, 2]’ and y = [V P]'.

d® is the p.d.f of the distribution;

P; are the prices;

ED() is an arbitrary excess demand function (which implicitly includes firm's foc);
II,, , is the transition matrix induced by the optimal policy:

Gar = argmaxu(a(l +ry) + wis — a') + BE Vi1 (d, s, dP', 2')

v

v vy
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Reiter’'s Method

e Since we discretize both ® and V}, the first two rows must hold for ALL the idiosyncratic
state.

e The number of equations that we need to linearize is exponentially large.

e Linearization is often done using numerical derivatives. Nowadays people use automatic
differentiation to do the job.

e Solution (up to first order) has certainty equivalence: no precautionary savings because
of aggregate risk.

e The method cannot capture nonlinearities or sign asymmetries.
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Transition Dynamics and MIT shocks

Most of the time, we are interested in simulating an impulse response function (IRF).

A IRF is just the deterministic transition dynamics between two steady states after an
unexpected aggregate shock (a MIT shock).

Boppart, Krusell and Mitman (2018) show that the IRF can be used to compute
equilibrium of HA with agg. uncertainty.

Solving for the transition dynamics is also useful if you are interested in studying the
transition to a new steady state after a change in economic policy.
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MIT shock

e MIT shock: an unpredictable shock to the steady-state equilibrium of an economy
without shocks.

» No shocks are expected to ever materialize but nevertheless a shock now occurs!

e We can now analyze the equilibrium transition along a perfect-foresight path until the
economy reaches the steady state.

e Some argue that Tom Sargent coined the term reflecting that some researchers at MIT
used the method.

» For fresh-water economists, a MIT shock is inconsistent with rational expectations!
» “A shock of probability zero, only at MIT they can get away with that!".
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MIT shock

e Suppose a standard Ayiagari in the steady state at ¢t = 0. At ¢t = 1, the economy receives
an (unexpected) TFP aggregate shock:

Y, = Z, KL~
log Zy = p.log Z; 1 + ¢

where e, = 0.01 if £ =1 and ¢; = 0 otherwise.

e If 0 < p, <1, when t — oo, the shock vanishes and we are back to the original steady
state.

e Our goal is to solve the transition dynamics between the two steady states.

» Because Z; varies in the transition, aggregate variables (prices, savings, distribution) change
during the transition.
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Sequential Equilibrium

e Instead of carrying the aggregate state, we index the Bellman Equation by time ¢.

s'es

Vi(a, s) ZC%ago{ )+ B> w(s's)Vigi(a's )}

s.t c+ad =ws+(1+r—0)a
e Solve for the transition means solving for the equilibrium in the asset market for all ¢:
/ ad®y(a, s;1m) = Ag(re) = Ki(ry)
AxS

both the distribution, ®;(a, s), and the aggregate capital, K, are indexed by ¢.
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IRF: Standard Aiyagari
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IRF: Standard Aiyagari Economy
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Transition Dynamics between Steady States

e The method is useful to compute transition between different steady states.

e Example: Suppose a labor tax, 7, that is used to finance a lump-sum transfer, T;. The
budget constraint:

c+ad =ws(l—7m)+ (1+r.—a+T;

The government runs a balanced budget: T; = rjw; L.

e Suppose the economy is in the SS with 7; = 0. At ¢ = 1, the government decides to raise
the tax rate: 7, = 0.2 (there are no aggregate shocks).

e How long does the economy take to reach the new steady state?
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Transition to New SS: Labor Tax

Labor Tax K
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Algorithm

(i) Solve for the initial and the final steady state. Select a large number of periods 7.

(ii) Guess a path of { K7} 5!, Ky and Kp are given by the initial /final steady state. Recover
the prices {rt,wt}tT;; using the firm’s problem and the sequence of Z;.

(iii) Given prices, {7, w;}L_,, solve the value function (and policy functions) backwards from
t =T —1,...2 starting from the final steady state value function.

» Endogenous Grid works well, but careful to use the correct prices!

(iv) Starting from the initial steady state distribution, simulate the distribution forward
from t =1,...,T — 1 using the policy functions, g, +(a,s) and the Markov process of s.
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Algorithm

(v) Compute aggregate savings (capital) using the distribution for all t: {K} tT:_zl.

(vi) Compute the maximum difference between the guess sequence, { K7}, and the new
sequence, {K;}. If it is smaller than tol, stop. Otherwise, update the guess using the rule:

Ky = \KS + (1—- NK!  fort=2,.,T—1,

where X € (0,1) is a dampening parameter, and return to (7).
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Algorithm

e The “shooting algorithm” does not have established convergence properties but tends to
work well in practice.

e The damp parameter should not be too large, otherwise, it may not converge.

e T has to be large enough to allow the shock to fade out completely. Always check the last
transition between times T'— 1 and 7.

e A good initial guess is K = K; for all ¢.

e If labor supply is endogenous you can guess K/L. If you need to find the eq. in other
markets you have to guess an additional sequence.
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Boppart-Krusell-Mitman (2018)

e Intuitively, the method uses the impulse response function as a sufficient statistic to
compute the eq. of the model.

e In theory, dynamic programming says that any aggregate statistic of the model can be
computed as a function of the aggregate state: z(Z, ®).

e Instead of using aggregate state, we can also write the aggregate stats as a function of
past shocks. For example, the aggregate capital at time ¢ is:

Ky = K(5t75t—175t—27 )7

where &; is the innovation of the aggregate at time ¢.
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Boppart-Krusell-Mitman (2018)

e If we assume that the model response to the shock is approximately linear, we can write
K as a linear function of past shocks:

K; = &,K(1,0,0,..) + &1 K(0,1,0,...) + £1_2K(0,0,1,...) + ...

where K(0,1,0,...) is the (non-linear) response of capital at time ¢ to a shock (scaled to
1) that happened at ¢ — 1.

e Note that each K is the response of ONLY ONE shock at each point in time.

e In the notation of BKM: Ky = K(1,0,0,...), K1 = K(0,1,0,...), etc. Then:
K; = thszs
s=0
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Boppart-Krusell-Mitman (2018)

When we compute an impulse response function to an MIT shock, we get exactly the
response of capital to a 1% shock that happened s periods before!

That is, we have a sequence of K:

[K(1,0,0,...), K(0,1,0,...), K(0,0,1,...), ...]

In fact, we have that for all aggregate statistics of the model.

To simulate the model, we can simply draw a sequence of shocks € and use the statistics
computed by the impulse response.
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Boppart-Krusell-Mitman (2018)

Figure: Simulation of Aggregate Capital using BKM

10
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Boppart-Krusell-Mitman (2018)

e Good: It is easy to use. The only thing you need is an impulse response function. You can
compute using standard dynamic programming methods.

e It is trivial to add more shocks. Because shocks are linear, you just need to simulate two
IRF for each shock. Then, the final effect of the shocks is simply additive.

e Bad: If the model is highly non-linear or has sign-dependence it can be a poor
approximation.

e As every other linear method, it assumes certainty equivalence. No second-order effects
from aggregate risk; It may perform poorly if the shock brings you far from the steady
state.
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State-of-the-Art Methods

e Bayer and Luetticke (2020). Solving discrete time heterogeneous agent models with
aggregate risk and many idiosyncratic states by perturbation.

» Extends Reiter (2009) by applying a step that reduces the dimensionality of the model.

» The codes are available in their website (Matlab, Python and Julia):
https://www.ralphluetticke.com/.

e Auclert, Barddczy, Rognlie and Straub (2021). Using the Sequence-Space Jacobian
to Solve and Estimate Heterogeneous-Agent Models.

» Instead of solving for the full transition, they show that the Jacobian of the equilibrium is
enough.

» Check their lecture notes at: here.

» Python notebooks with plenty of examples are available: here.
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Sequence-Space Jacobian

Auclert, Bardéczy, Rognlie and Straub (2021)

e Their idea is that we can write the model in blocks and draw it as directed acyclic graphs
(DAGs).

e A block is a part of the model that can be solved independently of the other parts.
Example:

» Household Block = takes as given sequences of prices/policies (interest rates, wages, tax
policies) and output sequences of aggregate consumption, savings, etc.

e Every block takes a sequence of inputs and outputs.

e The model is a combination of household block, firm block, government block, equilibrium
block, etc.
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Sequence-Space Jacobian

e Denote sequences of variables, e.g. Z;, as vectors Z = (Zy, Z1, ...).

e Example: Krusell-Smith Model — Exogenous: Z, Endogenous: K.

» Firm’s Problem: Z, K — r,w.

» Household’s Problem: r,w — C, A (where C and A are vectors of aggregate
consumption and savings, e.g., C; = [ gc.i(a, s)d®;).

» Market Clearing: A, K — H = A — K (assets mkt clearing, alternatively we could have
used the goods mkt).

e Equilibrium: There is a sequence K, that clears the market, H = 0, in all periods ¢ given
the sequence of exogenous variable Z.
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Block Representation of Krusell-Smith Model

r, W
Z

Exogenous: Z
Endogenous: K

K

Household's

Block

—=

Market Clearing:
H=A-K
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Capital Response to Shocks

e Goal is to solve for market equilibrium given a sequence of exogenous shocks. In our
example: H= A — K.

» The sequence of aggregate savings, A = (4y, A1, ...), is a function of the entire sequences of
interest rate, r, and, w. Further, r, and wage, w are functions of the sequences of shock, Z,
and capital, K.

» Also, for every t, aggregate savings is a function of the entire sequences Z and K. Then:
Ay(r,w) = A(Z,K) (4)
e The equilibrium condition in period ¢ is:
Hy(Z,K) = A(Z,K) — K,
e The sequences of equilibrium conditions are: H(Z,K) = A(Z,K) — K.
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Capital Response to Shocks

e Auclert et al (2021) = we don’t need to solve for the entire equilibrium sequence to
recover the response of K to Z. Just need to look Jacobians.

e From the implicit function theorem, the linear impulse response of K to a transitory
technology shock dZ = (dZy,dZy,...)" is:

dK = Hy' HzdZ

where Hk and Hyz are the Jacobians of H with respect to K and Z, evaluated at the
steady state.

e Once we have dK, we can easily compute the response of other variables.
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The Jacobians

e To compute Hk and Hz, we may have to use the chain-rule.

e For example, the eq. response to Z is the response of A to changes in r and, w, which
further respond to Z. We can write as a composite of Jacobians:

Hy = JA7 . % 4 Jaw . guZ

where JA" is the Jacobian of A to r, and so on.

e The Jacobians of H are just the chain-rule of each model blocks’ Jacobians (J).
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The Jacobians

e What the Jacobians look like? Depends how complicated are model blocks.
e Some are very simple, some are complicated. The “Representative firm block” is simple.

e Example: w only depends on the contemporaneous Z.

»w=(1—a)Z; (%)a Then, the Jacobian is:

Owo  Owy dwo Ko\
8Zy 0z, = 9Zr (1-a)(32)" 0 .. 0
Jus = | DU i - : : :
owr Owr owr 0 0 ... (1—-a) (%)a
0Zy 07, T 0Zr g

» Note that we can exploit the sparsity of the matrix.
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The Jacobians

e The household Jacobian is complicated. Since the EE is forward looking, future shocks are
anticipated by the household..

e Example: A depends on the entire path of w.
» Household changes its behavior in time ¢, once she understands her earnings change in time

t+s.
» Since A; is aggregate savings, we just need that some households change their behavior to

change A;.
oAy Ay O
8w0 8w1 o E)wT
JAw — : - ) :
O0Ar OAr OAT
8w0 6w1 o 8wT

» Matrix is not sparse anymore.
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Sequence-Space Jacobian

e Once we have the Jacobians of each model block, we can compute the response to any
type of shocks, IRF, or transition dynamics for a new SS.
e The key is to compute the Jacobians efficiently.
» Auclert et al (2021) develops an algorithm based on “news shocks” (i.e., learning today that
future income increases) = Fake News Algorithm.
» Also must re-use the Jacobians so we only need to compute them once.
e The algorithm allows us to solve even very complex HANK models.
e It can also be applied to more general models (entry-exit, discrete choices, etc), but some

details must be taken care of.

» Limitations = models where the Bellman equation depends directly on the distribution
(e.g., wage posting search models).
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