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Introduction

• At this point, we have only focus on the Stationary Equilibrium.

• Many questions involve solving the model beyond the Steady-State Stationary Equilibrium.

• Aggregate Uncertainty:
I How the Aiyagari economy reacts to aggregate shocks.
I Does heterogeneity matters to the business cycles?

• Transitions Dynamics:
I How long it takes to the economy reach a new steady state after an economic reform.
I How to compute the transition from one steady state to another.
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Krueger, Mitman and Perri (2016, Handbook of Macro)

• Question: How important is household heterogeneity for the amplification and
propagation of macroeconomic shocks?

• Focus on the US Great Recession of 2007–09.

• Heterogeneity: earnings, wealth, and household preferences.

• Consequences for cross-sectional inequality in disposable income and consumption
expenditures.
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Krueger, Mitman and Perri (2016, Handbook of Macro)

Method:
• Summarize empirical facts about the joint distribution of income, wealth, and consumption

before and during the great recession.

• Compute various versions of the HA model with aggregate uncertainty and study its
cross-sectional and dynamic properties.

I Simple version of the model “replicates” the results of representative agent model.

I Model extension with life-cycle, unemployment insurance and social security does a much
better job.

• Study the impact of social insurance policies.
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Empirical Evidence: Levels

• Data: PSID (2004, 2006, 2008, and 2010). New version covers income, wealth, and
consumption.
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Empirical Evidence: Changes

• Last column: saving rates increase relatively more for wealth-poor households during the
recession.
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A Business Cycle Model with HH Heterogeneity

Ingredients:

• Idiosyncratic individual shocks + incomplete markets a la Aiyagari-Hugget.

• Aggregate Shocks in the spirit of the Real Business Cycle literature.

• 2 stages life cycle: young (workers) and old (retiree).

• Ex-ante heterogeneity in β.

• Government policy: unemployment insurance and social security.

8 / 65



Production Technology

• Aggregate production function is Cobb-Douglas over capital and labor:

Y = Z∗KαN1−α (1)

• Z∗ ≡ ZCω, where ω ≥ 0.

• Aggregate shock: Z follows a 2-state Markov with transition matrix π(Z ′|Z):
I Z ∈ {Zl, Zh}. Zl: recession, Zh : normal times.

• Demand externality: Cω
I If ω = 0, standard neoclassical production function.
I If ω > 0, production is partially determined by demand.
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Households

• Standard utility over consumption u(c), they cannot borrow, a′ ≥ 0.

• Ex-ante and fixed heterogeneous discount factor β ∈ B.

• Two idiosyncratic states:
I Employment: s ∈ {e, u}. Transition matrix depends on aggregate state: π(s′|s, Z ′, Z).
I Income: γ. Transition matrix is independent of the aggregate state: π(γ′|γ).

• Stochastic life cycle:
I households are born as workers and with probability 1− θ they retire;
I after retiring, they receive pensions and with probability 1− ν they die.
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Government Policy

• Pensions and unemployment benefits are financed using proportional labor taxes.

• Government runs a balance budget system every period.

• Unemployment insurance:
I Pays a fraction ρ ∈ [0, 1) of the household potential income: b = ρwγ.
I Financed with tax rate, τ(Z). The tax adjusts to maintain the budget balanced. In

recessions, the tax rate increases.

• Pension benefits:
I Financed with a fixed social security contribution τss.
I Pension benefits, bss, adjust to maintain the budget balanced. In recessions, the pension

decreases.
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Household Bellman Equation: Retiree

VR(a, β;Z,Φ) = max
c, a′≥0

u(c) + νβ
∑
Z′∈Z

π(Z ′|Z)VR(a′, β;Z ′,Φ′)


s.t c+ a′ = bss(Z,Φ) + (1 + r(Z,Φ)− δ)a/ν

Φ′ = H(Z,Φ, Z ′)

where Φ is the distribution of agents in the economy.

• Individual state: (a, β), aggregate state: (Z,Φ).
• H(): Rational expectations function. The agents correctly forecast the next period

distribution, given the state of the economy.
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Household Bellman Equation: Worker

Vw(s, γ, a, β;Z,Φ) = max
c, a′≥0

{
{u(c) + β

∑
(Z′,s′,γ′)∈(Z,s,γ)

π(Z ′|Z)π(s′|s, Z ′, Z)π(γ′|γ)

× [θVW (s′, γ′, a′, β;Z ′,Φ′) + (1− θ)VR(s′, γ′, a′, β;Z ′,Φ′)]

}
s.t c+ a′ = (1− τ(Z)− τss)γw(Z,Φ)[1− (1− ρ)1s=u] + (1 + r(Z,Φ)− δ)a

Φ′ = H(Z,Φ, Z ′)

• Individual state: (a, s, γ, β), aggregate state: (Z,Φ).
• Employed earnings: γw; unemployed earnings ργw.
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Equilibrium

• Prices are given by FOCs of firm’s problem:

w(Z,Φ) = Zα

Ç
K(Z,Φ)

N(Z)

å1−α
and r(Z,Φ) = Z(1− α)

Ç
N(Z)

K(Z,Φ)

åα
where aggregate employment N(Z) is given by the distributions of the Markov process
(which depends on Z).

• Asset market clears:
K(Z,Φ) =

∫
adΦ

• The distribution evolves according to the function: Φ′ = H(Z,Φ, Z ′). In equilibrium, this
function is consistent with the individual decisions.
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Digression: Krusell & Smith (1998)

• Because prices are allowed to vary over the cycles and they are needed for the household
problem: the aggregate state, (Z,Φ), is part of the state of the HH.

• Problem: the distribution, Φ, is a high-dimensional object and the state space increases
substantially.

• Krussel & Smith (1998): instead of using the entire distribution, just use some
moments of the distribution:

I Households are “boundedly rational” on how the distribution evolves.
I In this class of models, the mean is enough to correctly forecast prices:

Φ′ = H(Z,Φ, Z ′) ⇒ K ′ = H(Z,K,Z ′) (2)
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Digression: Krusell & Smith (1998)

• Substitute Φ by K. Example:

VR(a, β;Z,K) = max
c, a′≥0

u(c) + νβ
∑
Z′∈Z

π(Z ′|Z)VR(a′, β;Z ′,K ′)


s.t c+ a′ = bss(Z,K) + (1 + r(Z,K)− δ)a/ν

K ′ = H(Z,K,Z ′)

• Intuition: the mean of Φ works well to forecast prices because the savings policy function
is approximately linear.

• For more complex models, one may need higher moments.
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Back to Krueger, Mitman and Perri: Models

• KS: Basic model, very similar to Krusell-Smith (1998);
• Benchmark model: second row, calibrated to match the US economy.
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Calibration

• Model calibrated to quarterly data. α = 0.36, δ = 0.025, u(c) = log(c).

• Z duration and GDP drop of a “severe recession”.

• s separation and job-finding rates, γ comes from a persistent-transitory process estimated
from PSID.

• θ, ν: a working period of 40 years and a retirement period of 15 years.

• β from uniform distribution: match Gini for the wealth distribution.

• Policy: unemployment benefits of 50%, ρ = 0.5. Pension of 40% of avg. wage.
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Evaluating the Model: Wealth Distribution

• Benchmark matches the wealth distribution; but fails in the top 1%. KS fails.
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Evaluating the Model: Joint Distribution

• Qualitatively close to the data, but quantitative a bit far; wealth poor consuming too little,
and the wealth rich consuming too much.
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Evaluating the Model: Dynamics in Normal Times

• Slightly too much downward and upward mobility on income, but in general good job.
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Evaluating the Model: Dynamics in Recession

• Consumption-savings in the recession: ↓ savings because of consumption smoothing; ↑
savings because of precautionary savings.

I In the model: the first is stronger for the richer, but the latter is stronger for the poorer.
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Aggregate Shock: Krusell-Smith vs Representative Agent

• The Krusell-Smith economy is
remarkably similar to the
representative agent in the aggregate.

• Intuition: without too many
constrained agents, the HA economy
behaves as a RA.
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Aggregate Shock: All models

• Benchmark generates a larger drop in
consumption than KS economy.

• Largely accounted by income risk on
top of employment risk.

• Recall that benchmark economy has
high unemployment benefits.
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Differences between KS and Benchmark Economy

• Benchmark generates a larger drop in consumption because it has a larger share of low
wealth households.

• The low wealth consumes more in the benchmark because of unemployment benefits.
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The Role of Unemployment Insurance

• Unemployment benefits help the low wealth poor to consume in bad times.

• Aggregate consumption falls much more in recessions without UI.
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Demand Externality

• Keynesian flavor increases the size of
the recession.

• Lots of wealth poor ⇒ large drop in
consumption ⇒ demand externality
⇒ further drops output.
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Conclusion: Krueger, Mitman and Perri

• Simple heterogeneity a la Krusell-Smith/Aiyagari is not enough to generate differences
from the representative agent model.

• Other ingredients should be added to get a meaningful wealth distribution.

• Low wealth agents are key to getting the larger fall in consumption.

• Unemployment insurance attenuates the fall of aggregate consumption.

• Demand externality further increases the recession: motivation to include a proper
microfoundation of the demand effect.
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Where to go now?

• Income Risk and Business Cycles: Bayer et al (2019, ECTA), McKay (2017, JME).

• Search Frictions and Unemployment: Ravn and Sterk (2017, JME), Nakajima (2012,
JME; 2012, IER).

• Precautionary Savings over the Cycles: Challe and Ragot (2016, EJ), Heathcote and
Perri (2017, ReStud).

• Credit Crunch and Housing: Guerrieri and Lorenzoni (2017, QJE), Kaplan, Mitman and
Violante (2020, JPE).

• Automatic Stabilizers: McKay and Reis (2017, ECTA; 2021, ReStud).

• Trends in Inequality: Heathcote et al (2010, JPE), Heathcote, Perri and Violante (2020,
RED).

• Transition dynamics of all questions we saw before.
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Computational

• To solve a heterogeneous agent economy with aggregate uncertainty the main methods
are:

I Krusell-Smith (1998, JPE) bounded rationality algorithm.

I MIT shock (Boppart, Krusell and Mitman, 2018, JEDC).

I Reiter (2009, JEDC) Method.

I Auclert, Bardóczy, Rognlie and Straub (2021, ECTA) sequence space Jacobian.

• There are others/variations of algorithms. Check Algan et al (2014).
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Krusell-Smith Algorithm

• References: Krusell-Smith’s original paper is easy to follow. Check also Nakajima’s notes.

• Krusell-Smith: use some moments finite moments instead of the entire distribution.
I In the model we saw before just the mean is enough: K ′ = H(Z,K,Z ′).

• Approximate the function forecasting function H() with a log-linear form:

logK ′ = al + bl logK if Z = Zl

logK ′ = ah + bh logK if Z = Zh

• We have to find the parameters: (al, ah, bl, bh).
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Krusell-Smith Algorithm

Discretize the state space: (a, s,K,Z). Recover the prices r(K,Z) and w(K,Z) for each state
space using the firm’s problem.

(i) Guess the parameters of the forecast function: (a0l , a
0
h, b

0
l , b

0
h).

(ii) Given (a0l , a
0
h, b

0
l , b

0
h), solve the Bellman Equation of the HH for all the state space

(a, s,K,Z).

(iii) Given the household policy functions, simulate T periods:

I Draw a sequence of Zt for all T . Guess a initial distribution Φ0.

I Using the policy function and the sequence Zt, keep updating the distribution Φt forward.

I Compute the mean of the distribution Kt (and other moments if necessary).

I Drop the first T0 periods. Now, we have a sequence {Zt,Kt}Tt=T0
.
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Krusell-Smith Algorithm

(iv) Using the sequence {Zt,Kt}Tt=T0 , run a linear regression and recover the new coefficients:
(a1l , a

1
h, b

1
l , b

1
h).

(v) Check the distance between the guess a0, b0 and the new parameters a1, b1. If it is smaller
than tol, we are done. Otherwise, update the guess and start again:

a0 = λa0 + (1− λ)a1

b0 = λb0 + (1− λ)b1

where λ ∈ (0, 1) is a damping parameter.
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Krusell-Smith Algorithm: Issues

• After you finish, you must check the R2 of the forecast regression. If the R2 is low, you
must add more moments or change the function form.

I In Krusell-Smith, R2 = 0.999, so the perceived law of motion of K is very close to the actual
law of motion.

• Poor initial guesses might not converge. One good guess is a = logKss and b = 0.

• Good: KS captures potential non-linearities and large shocks. For instance, asymmetries
between the boom and the recession; uncertainty shocks; etc.

• Bad: KS can be inaccurate if there are explicitly distributional channels coming from the
top of the wealth distribution. Potentially very slow.
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Reiter Method

• Perturbation Methods:
I Generalization of the well-known linearization around the steady state.
I Often used to solve representative agent models.
I They tend to be fast, but require derivatives and some stability conditions (Blanchard-Kahn).

• Standard software (i.e., dynare) uses this method.

• Reiter (2009) propose to solve for the stationary equilibrium using global methods
(projection methods), and then use perturbation methods to solve for the aggregate shock.

• If you need a refresher on Pertubation methods, check Fernandez-Villaverde’s notes.
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Reiter’s Method

• We can write the solution of DSGE models as a nonlinear system of difference equations:

EtF (xt, xt+1, yt, yt+1) = 0 (3)

where x is the vector of predetermined variables (state), y is nonpredetermined variables
(control).

• Then, we can linearize the system (either numerically or analytically) and use methods to
solve the linear system of difference equations:

I Blanchard and Kahn (1980); Uhlig (1999); Sims (2000); Rendahl (2018).
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Reiter’s Method

• Example: Stochastic Neoclassical Growth model

EtF (xt, xt+1, yt, yt+1) = Et

c
−γ
t − βEtc

−γ
t+1[αk

α−1
t+1 + 1− δ]

ct + kt+1 − eztkαt − (1− δ)kt
zt+1 − ρzt − σεt+1

 = 0

where x = [k, z]′ and y = [c].

• First row is the Euler Equation, second is the feasibility constraint, and the last is the
stochastic process of the shock.
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Reiter’s Method

• Example: Krusell-Smith economy.

EtF (xt, xt+1, yt, yt+1) = Et


dΦt+1 − dΦtΠga,t

Vt − (uga,t + βΠga,tVt+1)
zt+1 − ρzt − σεt+1

ED(ga,t, dΦt, zt, Pt)


where x = [dΦ, z]′ and y = [V P ]′.

I dΦ is the p.d.f of the distribution;
I Pt are the prices;
I ED() is an arbitrary excess demand function (which implicitly includes firm’s foc);
I Πga,t

is the transition matrix induced by the optimal policy:

ga,t = arg maxu(a(1 + rt) + wts− a′) + βEtVt+1(a
′, s′, dΦ′, z′)
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Reiter’s Method

• Since we discretize both Φ and Vt, the first two rows must hold for ALL the idiosyncratic
state.

• The number of equations that we need to linearize is exponentially large.

• Linearization is often done using numerical derivatives. Nowadays people use automatic
differentiation to do the job.

• Solution (up to first order) has certainty equivalence: no precautionary savings because
of aggregate risk.

• The method cannot capture nonlinearities or sign asymmetries.
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Transition Dynamics and MIT shocks

• Most of the time, we are interested in simulating an impulse response function (IRF).

• A IRF is just the deterministic transition dynamics between two steady states after an
unexpected aggregate shock (a MIT shock).

• Boppart, Krusell and Mitman (2018) show that the IRF can be used to compute
equilibrium of HA with agg. uncertainty.

• Solving for the transition dynamics is also useful if you are interested in studying the
transition to a new steady state after a change in economic policy.
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MIT shock

• MIT shock: an unpredictable shock to the steady-state equilibrium of an economy
without shocks.

I No shocks are expected to ever materialize but nevertheless a shock now occurs!

• We can now analyze the equilibrium transition along a perfect-foresight path until the
economy reaches the steady state.

• Some argue that Tom Sargent coined the term reflecting that some researchers at MIT
used the method.

I For fresh-water economists, a MIT shock is inconsistent with rational expectations!
I “A shock of probability zero, only at MIT they can get away with that!”.
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MIT shock

• Suppose a standard Ayiagari in the steady state at t = 0. At t = 1, the economy receives
an (unexpected) TFP aggregate shock:

Yt = ZtK
α
t L

1−α
t

logZt = ρz logZt−1 + εt

where εt = 0.01 if t = 1 and εt = 0 otherwise.

• If 0 < ρz < 1, when t→∞, the shock vanishes and we are back to the original steady
state.

• Our goal is to solve the transition dynamics between the two steady states.
I Because Zt varies in the transition, aggregate variables (prices, savings, distribution) change

during the transition.
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Sequential Equilibrium

• Instead of carrying the aggregate state, we index the Bellman Equation by time t.

Vt(a, s) = max
c, a′≥0

u(c) + β
∑
s′∈S

π(s′|s)Vt+1(a
′s′)


s.t c+ a′ = wts+ (1 + rt − δ)a

• Solve for the transition means solving for the equilibrium in the asset market for all t:∫
A×S

adΦt(a, s; rt) ≡ At(rt) = Kt(rt)

both the distribution, Φt(a, s), and the aggregate capital, Kt, are indexed by t.
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IRF: Standard Aiyagari Economy
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IRF: Standard Aiyagari Economy
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Transition Dynamics between Steady States

• The method is useful to compute transition between different steady states.

• Example: Suppose a labor tax, τl, that is used to finance a lump-sum transfer, Tt. The
budget constraint:

c+ a′ = wts(1− τl) + (1 + rt − δ)a+ Tt.

The government runs a balanced budget: Tt = τlwtL.

• Suppose the economy is in the SS with τl = 0. At t = 1, the government decides to raise
the tax rate: τl = 0.2 (there are no aggregate shocks).

• How long does the economy take to reach the new steady state?
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Transition to New SS: Labor Tax
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Algorithm

(i) Solve for the initial and the final steady state. Select a large number of periods T .

(ii) Guess a path of {Kg
t }T−1t=2 . K1 and KT are given by the initial/final steady state. Recover

the prices {rt, wt}T−1t=2 using the firm’s problem and the sequence of Zt.

(iii) Given prices, {rt, wt}Tt=2, solve the value function (and policy functions) backwards from
t = T − 1, ...2 starting from the final steady state value function.

I Endogenous Grid works well, but careful to use the correct prices!

(iv) Starting from the initial steady state distribution, simulate the distribution forward
from t = 1, ..., T − 1 using the policy functions, ga,t(a, s) and the Markov process of s.
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Algorithm

(v) Compute aggregate savings (capital) using the distribution for all t: {Ks
t }T−1t=2 .

(vi) Compute the maximum difference between the guess sequence, {Kg
t }, and the new

sequence, {Ks
t }. If it is smaller than tol, stop. Otherwise, update the guess using the rule:

Kt = λKs
t + (1− λ)Kg

t for t = 2, .., T − 1,

where λ ∈ (0, 1) is a dampening parameter, and return to (ii).
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Algorithm

• The “shooting algorithm” does not have established convergence properties but tends to
work well in practice.

• The damp parameter should not be too large, otherwise, it may not converge.

• T has to be large enough to allow the shock to fade out completely. Always check the last
transition between times T − 1 and T .

• A good initial guess is Kss = Kt for all t.

• If labor supply is endogenous you can guess K/L. If you need to find the eq. in other
markets you have to guess an additional sequence.
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Boppart-Krusell-Mitman (2018)

• Intuitively, the method uses the impulse response function as a sufficient statistic to
compute the eq. of the model.

• In theory, dynamic programming says that any aggregate statistic of the model can be
computed as a function of the aggregate state: x(Z,Φ).

• Instead of using aggregate state, we can also write the aggregate stats as a function of
past shocks. For example, the aggregate capital at time t is:

Kt = K(εt, εt−1, εt−2, ...),

where εt is the innovation of the aggregate at time t.
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Boppart-Krusell-Mitman (2018)

• If we assume that the model response to the shock is approximately linear, we can write
Kt as a linear function of past shocks:

Kt = εtK(1, 0, 0, ...) + εt−1K(0, 1, 0, ...) + εt−2K(0, 0, 1, ...) + ...

where K(0, 1, 0, ...) is the (non-linear) response of capital at time t to a shock (scaled to
1) that happened at t− 1.

• Note that each K is the response of ONLY ONE shock at each point in time.

• In the notation of BKM: K0 = K(1, 0, 0, ...), K1 = K(0, 1, 0, ...), etc. Then:

Kt =
∞∑
s=0

εt−sKs
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Boppart-Krusell-Mitman (2018)

• When we compute an impulse response function to an MIT shock, we get exactly the
response of capital to a 1% shock that happened s periods before!

• That is, we have a sequence of K:

[K(1, 0, 0, ...),K(0, 1, 0, ...),K(0, 0, 1, ...), ...]

• In fact, we have that for all aggregate statistics of the model.

• To simulate the model, we can simply draw a sequence of shocks ε and use the statistics
computed by the impulse response.
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Boppart-Krusell-Mitman (2018)

Figure: Simulation of Aggregate Capital using BKM
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Boppart-Krusell-Mitman (2018)

• Good: It is easy to use. The only thing you need is an impulse response function. You can
compute using standard dynamic programming methods.

• It is trivial to add more shocks. Because shocks are linear, you just need to simulate two
IRF for each shock. Then, the final effect of the shocks is simply additive.

• Bad: If the model is highly non-linear or has sign-dependence it can be a poor
approximation.

• As every other linear method, it assumes certainty equivalence. No second-order effects
from aggregate risk; It may perform poorly if the shock brings you far from the steady
state.
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State-of-the-Art Methods

• Bayer and Luetticke (2020). Solving discrete time heterogeneous agent models with
aggregate risk and many idiosyncratic states by perturbation.

I Extends Reiter (2009) by applying a step that reduces the dimensionality of the model.

I The codes are available in their website (Matlab, Python and Julia):
https://www.ralphluetticke.com/.

• Auclert, Bardóczy, Rognlie and Straub (2021). Using the Sequence-Space Jacobian
to Solve and Estimate Heterogeneous-Agent Models.

I Instead of solving for the full transition, they show that the Jacobian of the equilibrium is
enough.

I Check their lecture notes at: here.

I Python notebooks with plenty of examples are available: here.
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Sequence-Space Jacobian

Auclert, Bardóczy, Rognlie and Straub (2021)

• Their idea is that we can write the model in blocks and draw it as directed acyclic graphs
(DAGs).

• A block is a part of the model that can be solved independently of the other parts.
Example:

I Household Block ⇒ takes as given sequences of prices/policies (interest rates, wages, tax
policies) and output sequences of aggregate consumption, savings, etc.

• Every block takes a sequence of inputs and outputs.

• The model is a combination of household block, firm block, government block, equilibrium
block, etc.
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Sequence-Space Jacobian

• Denote sequences of variables, e.g. Zt, as vectors Z = (Z0, Z1, ...).

• Example: Krusell-Smith Model → Exogenous: Z, Endogenous: K.
I Firm’s Problem: Z,K −→ r,w.

I Household’s Problem: r,w −→ C,A (where C and A are vectors of aggregate
consumption and savings, e.g., Ct =

∫
gc,t(a, s)dΦt).

I Market Clearing: A,K −→ H ≡ A−K (assets mkt clearing, alternatively we could have
used the goods mkt).

• Equilibrium: There is a sequence K, that clears the market, H = 0, in all periods t given
the sequence of exogenous variable Z.
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Block Representation of Krusell-Smith Model
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Capital Response to Shocks

• Goal is to solve for market equilibrium given a sequence of exogenous shocks. In our
example: H ≡ A−K.

I The sequence of aggregate savings, A = (A0, A1, ...), is a function of the entire sequences of
interest rate, r, and, w. Further, r, and wage, w are functions of the sequences of shock, Z,
and capital, K.

I Also, for every t, aggregate savings is a function of the entire sequences Z and K. Then:

At(r,w) = At(Z,K) (4)

• The equilibrium condition in period t is:

Ht(Z,K) = At(Z,K)−Kt

• The sequences of equilibrium conditions are: H(Z,K) = A(Z,K)−K.
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Capital Response to Shocks

• Auclert et al (2021) ⇒ we don’t need to solve for the entire equilibrium sequence to
recover the response of K to Z. Just need to look Jacobians.

• From the implicit function theorem, the linear impulse response of K to a transitory
technology shock dZ = (dZ0, dZ1, ...)

′ is:

dK = H−1K HZdZ

where HK and HZ are the Jacobians of H with respect to K and Z, evaluated at the
steady state.

• Once we have dK, we can easily compute the response of other variables.
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The Jacobians

• To compute HK and HZ, we may have to use the chain-rule.

• For example, the eq. response to Z is the response of A to changes in r and, w, which
further respond to Z. We can write as a composite of Jacobians:

HZ = JA,r · Jr,Z + JA,w · Jw,Z

where JA,r is the Jacobian of A to r, and so on.

• The Jacobians of H are just the chain-rule of each model blocks’ Jacobians (J).
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The Jacobians

• What the Jacobians look like? Depends how complicated are model blocks.

• Some are very simple, some are complicated. The “Representative firm block” is simple.

• Example: w only depends on the contemporaneous Z.

I wt = (1− α)Zt
Ä
Kt

Nt

äα
. Then, the Jacobian is:

Jw,Z =


∂w0

∂Z0

∂w0

∂Z1
. . .

∂w0

∂ZT
...

. . .
. . .

...
∂wT
∂Z0

∂wT
∂Z1

. . .
∂wT
∂ZT

 =


(1− α)

Ä
K0
N0

äα
0 . . . 0

...
. . .

. . .
...

0 0 . . . (1− α)
Ä
KT
NT

äα
I Note that we can exploit the sparsity of the matrix.
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The Jacobians

• The household Jacobian is complicated. Since the EE is forward looking, future shocks are
anticipated by the household..

• Example: A depends on the entire path of w.
I Household changes its behavior in time t, once she understands her earnings change in time
t+ s.

I Since At is aggregate savings, we just need that some households change their behavior to
change At.

JA,w =


∂A0

∂w0

∂A0

∂w1
. . .

∂A0

∂wT
...

. . .
. . .

...
∂AT
∂w0

∂AT
∂w1

. . .
∂AT
∂wT


I Matrix is not sparse anymore.
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Sequence-Space Jacobian

• Once we have the Jacobians of each model block, we can compute the response to any
type of shocks, IRF, or transition dynamics for a new SS.

• The key is to compute the Jacobians efficiently.
I Auclert et al (2021) develops an algorithm based on “news shocks” (i.e., learning today that

future income increases) ⇒ Fake News Algorithm.
I Also must re-use the Jacobians so we only need to compute them once.

• The algorithm allows us to solve even very complex HANK models.

• It can also be applied to more general models (entry-exit, discrete choices, etc), but some
details must be taken care of.

I Limitations ⇒ models where the Bellman equation depends directly on the distribution
(e.g., wage posting search models).
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