Transition Dynamics and MIT shock
The goal of this note is to show how to solve the transition dynamics of a standard incomplete market model. We use the Endogenous Grid Method (EGM) to solve the dynamic programming problem and non-stochastic simulation to solve for the distribution of agents in the economy.
After we solve for the Impulse Response Function of a TFP shock, we simulate the model using the method of Boppart-Krusell-Mitman (2018, JEDC). Finally, we show how to compute the transition path between two different steady states by simulating an exogenous change in the labor tax.
The model is pretty standard. Instead of solving for the Stationary Equilibrium, we must solve for the Sequential Equilibrium. That is, the equilibrium in the asset market (and any other) must hold for all periods $t$.
The production function is Cobb-Douglas. There is now time-varying total factor productivity $Z_t$. TFP follows an AR(1) process.
$$Y_t = Z_t K_t^\alpha L^{1-\alpha},$$
where $\log Z_t = \rho_z \log Z_{t-1} + \sigma_z \varepsilon_t$.
The consumption-savings problem is summarized by the following sequential Dynamic Programming problem:
$$V_t (a, s) = \max_{a' \geq -\phi} \{u((1+r_t )a + w_t \exp{s} -a' ) + \beta\mathbb{E}[V_{t+1} (a', s')|s] \},$$
where $s$ follows an AR(1) process:
$$s_t = \rho s_{t-1} + \sigma \varepsilon_t,$$
where $\varepsilon \sim N(0, 1)$.
The main difference is that the Value Function is indexed by the time index $t$. The time index summarizes all relevant time varying information for the household, such as prices.
Since we have to solve for the equilibrium in all periods, we have to aggregate the wealth of all households using the distribution $\lambda(a,s)$ of households and get the aggregate capital.
The distribution will be time-varying and have to satisfy the time-varying law-of-motion:
$$\lambda_t (\mathcal{A} \times \mathcal{S}) = \int_{A \times S} Q_t((a, s), \mathcal{A} \times \mathcal{S})) d \lambda_t.$$
Intuitively, since the transition function $Q_t$ depends on the household policy functions (that are time-varying), the distribution would be evolving during the transition.
Finally, the interest rate, $r_t$, must clear the asset market in all periods:
$$\int_{A\times S} a d\lambda_t(a,s) = K_t.$$
Numerical implementation
First, we define packages, auxiliary functions, and all functions used in solving the model in the steady state.
coordGridIntp! (generic function with 1 method)
Here we have the functions to solve for the stationary equilibrium. They are pretty much the same functions used in the previous notebook. The only difference is that we include fiscal policy parameters, such as tax and transfers, and a government budget constraint equilibrium condition (check the excess demand function!).
ModelSolutionSS (generic function with 1 method)
Parameters
In the function below, we define the parameters. Discretization is standard. We simulate the model for 150 periods. Note that we are already simulating the response of $Z_t$ to the shock. We also define some policy parameters in the initial and final steady-state.
setPar (generic function with 1 method)
0.33
0.05
0.96
2.0
0.0
1.0
0.95
300
0.0
0.00388789
0.00787298
0.0119577
0.0161445
0.020436
0.0248348
0.0293436
0.0339651
250.0
7
0.844859
0.893695
0.945355
1.0
1.0578
1.11895
1.18363
7×7 Matrix{Float64}: 0.735092 0.232134 0.030544 … 8.46094e-5 1.78125e-6 1.5625e-8 0.038689 0.745273 0.194517 0.0010732 2.82188e-5 2.96875e-7 0.00203627 0.0778068 0.751416 0.0122627 0.000429281 5.64063e-6 0.000107172 0.00612572 0.117033 0.117033 0.00612572 0.000107172 5.64063e-6 0.000429281 0.0122627 0.751416 0.0778068 0.00203627 2.96875e-7 2.82188e-5 0.0010732 … 0.194517 0.745273 0.038689 1.5625e-8 1.78125e-6 8.46094e-5 0.030544 0.232134 0.735092
1.00237
150
1.0
1.01005
1.00955
1.00907
1.00861
1.00818
1.00777
1.00738
1.00701
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Dynamic Programming Problem
We now write a function that solves for the policy functions for all $t$. The function takes as inputs the parameters, an interest rate and wage sequence, a sequence of possible time-varying policy parameters, and the solution of the dynamic programming of the final steady-state (in this case, the policy function).
The policy function for consumption and savings, $g_{c, t}(a, s)$ and $g_{a, t}(a, s)$, are arrays of dimension: $n_A \times n_S \times n_T$ (basically a matrix for each $t$). We set the policy functions of the final steady-state at the last period.
The Endogenous Grid Method works exactly as in the case of the stationary model. Nevertheless, one has to be careful to use the correct prices, $r_t$ and $w_t$. We start from the last period and loop backward.
RetrievePolicySequence (generic function with 1 method)
Distribution Sequence
The distribution sequence is an array of dimension $n_A \times n_S \times n_T$, basicallly a histogram for each $t$.
The function is similar to the one used for the stationary equilibrium. It takes as arguments parameters, the policy function sequence, and the distribution of the initial steady state.
Starting from the initial distribution, we loop forward and construct the next period distribution from the exogenous Markov chain and the policy function. In every loop, we first ``discretize'' the policy decision between two histogram bins (a la Young (2005)), then compute the mass of agents in every bin for the next period using the current distribution and the Markov-chain of the labor endowment process.
solveDistSeq (generic function with 1 method)
Solving for the Equilibrium
Finally, we define a function that computes the excess demand for all periods $t$, and a function to solve for the equilibrium.
To compute the excess demand, we take as inputs the solution of the initial and final steady-state and a sequence of capital.
Using the sequence of capital and the time-varying $Z_t$, we use the first-order conditions of the firm problem to retrieve the sequence of prices, $r_t$ and $w_t$. Given the prices, we also check for the government budget constraint (if necessary) and get the lump-sum transfer that adjusts the budget. Now that we have the price and policy sequences, we solve the dynamic programming problem and simulate the distributions. Finally, we aggregate the distribution and compute a new sequence of capital.
If the sequence of capital is close to the guess, we stop. Otherwise, we update our guess using a convex combination between the new sequence and the guess.
ExcessDemandTrans (generic function with 1 method)
solveModelTrans (generic function with 1 method)
6.82548
6.82548
6.83539
6.84424
6.85208
6.85899
6.86504
6.87032
6.87489
6.82548
300×7×150 Array{Float64, 3}: [:, :, 1] = 0.00157897 0.00626499 0.00739237 … 0.000105142 3.6129e-6 4.69392e-8 4.79216e-5 0.000281176 0.000576457 8.77768e-6 3.04509e-7 3.97933e-9 4.15127e-5 0.000236916 0.000445112 6.7215e-6 2.32913e-7 3.0416e-9 3.96897e-5 0.000207169 0.00044472 6.8011e-6 2.36082e-7 3.08626e-9 3.31098e-5 0.000185618 0.000410241 6.85957e-5 3.49768e-6 6.0387e-8 2.92901e-5 0.000159313 0.000415786 … 0.000111122 5.73328e-6 9.95834e-8 2.64265e-5 0.000155447 0.000345414 1.8288e-5 8.67673e-7 1.44005e-8 ⋮ ⋱ ⋮ 1.93977e-25 1.26056e-24 3.44152e-24 4.34657e-24 2.11268e-24 4.43261e-25 4.30931e-26 2.79915e-25 7.63935e-25 … 9.65082e-25 4.71072e-25 9.94492e-26 9.11801e-27 5.91988e-26 1.61501e-25 2.04077e-25 1.00092e-25 2.12773e-26 1.83558e-27 1.19071e-26 3.24566e-26 4.09793e-26 2.02076e-26 4.32929e-27 3.58567e-28 2.32543e-27 6.33653e-27 7.99522e-27 3.94517e-27 8.48029e-28 6.5278e-29 4.29643e-28 1.19008e-27 1.5671e-27 7.99009e-28 1.77566e-28 [:, :, 2] = 0.00157897 0.00626499 0.00739237 … 0.000105142 3.6129e-6 4.69392e-8 4.79216e-5 0.000281176 0.000576457 8.77768e-6 3.04509e-7 3.97933e-9 4.15127e-5 0.000236916 0.000445112 6.7215e-6 2.32913e-7 3.0416e-9 3.96897e-5 0.000207169 0.00044472 6.8011e-6 2.36082e-7 3.08626e-9 3.31098e-5 0.000185618 0.000410241 6.85957e-5 3.49768e-6 6.0387e-8 2.92901e-5 0.000159313 0.000415786 … 0.000111122 5.73328e-6 9.95834e-8 2.64265e-5 0.000155447 0.000345414 1.8288e-5 8.67673e-7 1.44005e-8 ⋮ ⋱ ⋮ 1.93977e-25 1.26056e-24 3.44152e-24 4.34657e-24 2.11268e-24 4.43261e-25 4.30931e-26 2.79915e-25 7.63935e-25 … 9.65082e-25 4.71072e-25 9.94492e-26 9.11801e-27 5.91988e-26 1.61501e-25 2.04077e-25 1.00092e-25 2.12773e-26 1.83558e-27 1.19071e-26 3.24566e-26 4.09793e-26 2.02076e-26 4.32929e-27 3.58567e-28 2.32543e-27 6.33653e-27 7.99522e-27 3.94517e-27 8.48029e-28 6.5278e-29 4.29643e-28 1.19008e-27 1.5671e-27 7.99009e-28 1.77566e-28 [:, :, 3] = 0.00157703 0.00623648 0.00727069 … 0.000103202 3.54519e-6 4.60511e-8 4.74558e-5 0.000286573 0.000621078 9.50341e-6 3.29903e-7 4.3129e-9 4.17328e-5 0.000242856 0.000444469 6.69358e-6 2.31858e-7 3.02712e-9 3.96158e-5 0.000191194 0.000404105 6.1726e-6 2.14233e-7 2.8004e-9 3.2111e-5 0.000188313 0.000354024 5.34604e-6 1.8525e-7 2.41917e-9 3.03757e-5 0.000164738 0.000443827 … 0.000127306 6.57712e-6 1.14318e-7 2.64777e-5 0.000157313 0.000389144 5.8302e-5 2.96099e-6 5.10143e-8 ⋮ ⋱ ⋮ 2.01589e-25 1.33375e-24 3.7093e-24 4.84983e-24 2.35706e-24 4.92995e-25 4.4905e-26 2.97212e-25 8.26968e-25 … 1.08359e-24 5.28813e-25 1.11256e-25 9.52971e-27 6.31017e-26 1.75671e-25 2.3074e-25 1.13127e-25 2.3956e-26 1.92446e-27 1.27445e-26 3.54875e-26 4.66967e-26 2.30119e-26 4.90876e-27 3.77039e-28 2.49685e-27 6.95167e-27 9.14775e-27 4.5149e-27 9.66721e-28 6.9786e-29 4.71414e-28 1.33955e-27 1.84525e-27 9.37027e-28 2.06429e-28 ... [:, :, 148] = 0.00156915 0.00622447 0.00734262 … 0.00010443 3.58841e-6 4.66208e-8 4.76588e-5 0.000279463 0.000572611 8.71866e-6 3.02459e-7 3.95252e-9 4.12841e-5 0.000235469 0.000441943 6.67297e-6 2.31228e-7 3.01957e-9 3.94709e-5 0.000205784 0.000441431 6.7504e-6 2.3432e-7 3.06322e-9 3.29364e-5 0.000184594 0.000407442 6.75416e-5 3.44298e-6 5.94341e-8 2.91347e-5 0.000158365 0.00041346 … 0.000110919 5.72327e-6 9.94134e-8 2.62845e-5 0.000154502 0.000343012 1.81745e-5 8.62365e-7 1.43131e-8 ⋮ ⋱ ⋮ 1.83105e-25 1.18813e-24 3.23801e-24 4.06703e-24 1.96849e-24 4.11164e-25 4.13941e-26 2.68427e-25 7.31113e-25 … 9.17899e-25 4.45828e-25 9.3622e-26 8.95439e-27 5.80188e-26 1.5789e-25 1.97948e-25 9.65268e-26 2.03914e-26 1.85489e-27 1.20135e-26 3.26808e-26 4.09659e-26 2.00395e-26 4.25562e-27 3.67117e-28 2.37877e-27 6.47399e-27 8.12843e-27 3.98692e-27 8.50826e-28 6.56014e-29 4.31634e-28 1.19519e-27 1.5726e-27 8.0147e-28 1.77959e-28 [:, :, 149] = 0.00156918 0.00622448 0.00734223 … 0.000104424 3.58818e-6 4.66178e-8 4.76555e-5 0.000279451 0.00057252 8.71718e-6 3.02407e-7 3.95184e-9 4.12713e-5 0.000235429 0.00044201 6.6742e-6 2.31271e-7 3.02015e-9 3.94547e-5 0.000205462 0.000441093 6.74571e-6 2.34159e-7 3.06114e-9 3.29208e-5 0.000184823 0.000407804 6.74757e-5 3.43942e-6 5.93708e-8 2.91406e-5 0.000158377 0.000413534 … 0.000110987 5.72679e-6 9.9475e-8 2.62882e-5 0.00015452 0.000343009 1.81732e-5 8.62301e-7 1.4312e-8 ⋮ ⋱ ⋮ 1.83019e-25 1.18762e-24 3.23676e-24 4.06599e-24 1.96811e-24 4.11103e-25 4.13729e-26 2.68301e-25 7.30805e-25 … 9.1764e-25 4.45732e-25 9.36067e-26 8.94902e-27 5.79863e-26 1.57809e-25 1.9788e-25 9.65e-26 2.03869e-26 1.85386e-27 1.2007e-26 3.26642e-26 4.09484e-26 2.00325e-26 4.25443e-27 3.66929e-28 2.3776e-27 6.47097e-27 8.12526e-27 3.98565e-27 8.50603e-28 6.55862e-29 4.31545e-28 1.19497e-27 1.57244e-27 8.01422e-28 1.77952e-28 [:, :, 150] = 0.00157897 0.00626499 0.00739237 … 0.000105142 3.6129e-6 4.69392e-8 4.79216e-5 0.000281176 0.000576457 8.77768e-6 3.04509e-7 3.97933e-9 4.15127e-5 0.000236916 0.000445112 6.7215e-6 2.32913e-7 3.0416e-9 3.96897e-5 0.000207169 0.00044472 6.8011e-6 2.36082e-7 3.08626e-9 3.31098e-5 0.000185618 0.000410241 6.85957e-5 3.49768e-6 6.0387e-8 2.92901e-5 0.000159313 0.000415786 … 0.000111122 5.73328e-6 9.95834e-8 2.64265e-5 0.000155447 0.000345414 1.8288e-5 8.67673e-7 1.44005e-8 ⋮ ⋱ ⋮ 1.93977e-25 1.26056e-24 3.44152e-24 4.34657e-24 2.11268e-24 4.43261e-25 4.30931e-26 2.79915e-25 7.63935e-25 … 9.65082e-25 4.71072e-25 9.94492e-26 9.11801e-27 5.91988e-26 1.61501e-25 2.04077e-25 1.00092e-25 2.12773e-26 1.83558e-27 1.19071e-26 3.24566e-26 4.09793e-26 2.02076e-26 4.32929e-27 3.58567e-28 2.32543e-27 6.33653e-27 7.99522e-27 3.94517e-27 8.48029e-28 6.5278e-29 4.29643e-28 1.19008e-27 1.5671e-27 7.99009e-28 1.77566e-28
300×7×150 Array{Float64, 3}: [:, :, 1] = 0.0 0.0 0.0 … 0.0591291 0.108866 0.164866 0.0 0.0 0.000748691 0.0629361 0.112718 0.168736 0.0 0.0 0.00311083 0.0668396 0.116667 0.172702 0.0 0.000413831 0.00587553 0.0708417 0.120715 0.176768 0.0 0.00259961 0.00892933 0.074945 0.124864 0.180935 0.00192508 0.00487387 0.0121817 … 0.0791525 0.129118 0.185207 0.00417501 0.00725194 0.0157034 0.0834664 0.133478 0.189586 ⋮ ⋱ ⋮ 220.759 220.802 220.847 220.947 221.003 221.062 226.286 226.328 226.374 … 226.474 226.529 226.588 231.95 231.993 232.038 232.139 232.194 232.253 237.757 237.799 237.845 237.945 238.0 238.059 243.708 243.751 243.796 243.896 243.951 244.01 249.808 249.851 249.896 249.996 250.052 250.111 [:, :, 2] = 0.0 0.0 0.0 … 0.0631554 0.113792 0.170582 0.0 0.0 0.00128326 0.0669721 0.11765 0.174456 0.0 0.0 0.00378378 0.0708852 0.121604 0.178427 0.0 0.000615858 0.00674683 0.0748971 0.125658 0.182497 0.0 0.00282692 0.00992739 0.0790107 0.129813 0.186669 0.00206587 0.00512629 0.0133262 … 0.0832281 0.134073 0.190946 0.00432076 0.00751296 0.0169272 0.0875518 0.138439 0.195329 ⋮ ⋱ ⋮ 220.958 221.001 221.047 221.148 221.204 221.264 226.489 226.532 226.578 … 226.679 226.735 226.795 232.159 232.202 232.248 232.349 232.405 232.465 237.97 238.013 238.059 238.161 238.216 238.276 243.927 243.97 244.016 244.117 244.173 244.233 250.033 250.076 250.121 250.223 250.279 250.338 [:, :, 3] = 0.0 0.0 0.0 … 0.0628809 0.113488 0.170262 0.0 0.0 0.00123566 0.0666967 0.117345 0.174136 0.0 0.0 0.00372357 0.0706088 0.121299 0.178106 0.0 0.000594019 0.00667126 0.0746199 0.125352 0.182176 0.0 0.00280279 0.00984005 0.0787324 0.129507 0.186347 0.00204685 0.00509991 0.0132272 … 0.0829488 0.133765 0.190623 0.00430121 0.00748572 0.01682 0.0872715 0.138131 0.195006 ⋮ ⋱ ⋮ 220.932 220.975 221.021 221.123 221.178 221.238 226.463 226.506 226.552 … 226.653 226.709 226.769 232.132 232.175 232.221 232.322 232.378 232.438 237.943 237.986 238.032 238.133 238.189 238.248 243.899 243.942 243.988 244.089 244.145 244.204 250.004 250.047 250.093 250.194 250.25 250.309 ... [:, :, 148] = 0.0 0.0 0.0 … 0.0591502 0.108889 0.16489 0.0 0.0 0.000751419 0.0629572 0.112741 0.16876 0.0 0.0 0.00311671 0.0668607 0.11669 0.172726 0.0 0.000414053 0.00588389 0.0708628 0.120738 0.176792 0.0 0.0026004 0.00893867 0.0749661 0.124887 0.18096 0.00192505 0.00487505 0.0121932 … 0.0791736 0.129141 0.185231 0.00417505 0.00725311 0.0157153 0.0834875 0.133501 0.18961 ⋮ ⋱ ⋮ 220.759 220.801 220.847 220.947 221.002 221.061 226.285 226.328 226.373 … 226.474 226.529 226.588 231.95 231.993 232.038 232.138 232.193 232.252 237.756 237.799 237.844 237.944 238.0 238.059 243.708 243.75 243.796 243.896 243.951 244.01 249.808 249.85 249.896 249.996 250.051 250.11 [:, :, 149] = 0.0 0.0 0.0 … 0.0591513 0.10889 0.164891 0.0 0.0 0.000760702 0.0629583 0.112742 0.168761 0.0 0.0 0.00312284 0.0668618 0.116691 0.172727 0.0 0.000423824 0.00589004 0.0708639 0.120739 0.176793 0.0 0.0026096 0.00894461 0.0749672 0.124888 0.18096 0.00193432 0.00488421 0.0121979 … 0.0791747 0.129142 0.185232 0.00418429 0.00726227 0.0157196 0.0834886 0.133502 0.189611 ⋮ ⋱ ⋮ 220.759 220.801 220.847 220.947 221.002 221.061 226.285 226.328 226.373 … 226.474 226.529 226.588 231.95 231.993 232.038 232.138 232.193 232.252 237.756 237.799 237.844 237.944 238.0 238.059 243.708 243.75 243.796 243.896 243.951 244.01 249.808 249.85 249.896 249.996 250.051 250.11 [:, :, 150] = 0.0 0.0 0.0 … 0.0591291 0.108866 0.164866 0.0 0.0 0.000748691 0.0629361 0.112718 0.168736 0.0 0.0 0.00311083 0.0668396 0.116667 0.172702 0.0 0.000413831 0.00587553 0.0708417 0.120715 0.176768 0.0 0.00259961 0.00892933 0.074945 0.124864 0.180935 0.00192508 0.00487387 0.0121817 … 0.0791525 0.129118 0.185207 0.00417501 0.00725194 0.0157034 0.0834664 0.133478 0.189586 ⋮ ⋱ ⋮ 220.759 220.802 220.847 220.947 221.003 221.062 226.286 226.328 226.374 … 226.474 226.529 226.588 231.95 231.993 232.038 232.139 232.194 232.253 237.757 237.799 237.845 237.945 238.0 238.059 243.708 243.751 243.796 243.896 243.951 244.01 249.808 249.851 249.896 249.996 250.052 250.111
300×7×150 Array{Float64, 3}: [:, :, 1] = 1.06607 1.12769 1.19287 1.24306 1.27564 1.30305 1.32867 1.07011 1.13174 1.19617 1.24349 1.27588 1.30325 1.32885 1.07426 1.13589 1.19796 1.2439 1.27612 1.30345 1.32903 1.07852 1.13973 1.19945 1.24432 1.27637 1.30366 1.32922 1.08288 1.1419 1.20075 1.24474 1.27663 1.30387 1.32941 1.08542 1.14409 1.20197 1.24516 1.27689 1.30408 1.32961 1.08775 1.1463 1.20303 1.24557 1.27716 1.3043 1.32981 ⋮ ⋮ 10.3709 10.39 10.4098 10.4303 10.4515 10.4734 10.4961 10.6001 10.6192 10.639 10.6595 10.6807 10.7026 10.7253 10.835 10.8541 10.8739 10.8944 10.9156 10.9375 10.9602 11.0758 11.0949 11.1147 11.1352 11.1564 11.1783 11.201 11.3226 11.3417 11.3615 11.382 11.4032 11.4251 11.4478 11.5756 11.5947 11.6145 11.635 11.6562 11.6781 11.7008 [:, :, 2] = 1.07678 1.13902 1.20486 1.25299 1.28502 1.31232 1.33796 1.08083 1.14307 1.20763 1.25338 1.28526 1.31251 1.33814 1.08498 1.14723 1.20928 1.25377 1.2855 1.31271 1.33832 1.08924 1.15087 1.21058 1.25416 1.28574 1.31291 1.33851 1.0936 1.15302 1.21176 1.25456 1.28599 1.31312 1.3387 1.09601 1.15519 1.21283 1.25495 1.28625 1.31333 1.3389 1.09834 1.15739 1.21382 1.25534 1.28651 1.31355 1.3391 ⋮ ⋮ 10.3857 10.405 10.4249 10.4456 10.4669 10.489 10.5119 10.6151 10.6344 10.6543 10.6749 10.6963 10.7184 10.7412 10.8502 10.8694 10.8894 10.91 10.9314 10.9534 10.9763 11.0911 11.1104 11.1303 11.151 11.1723 11.1944 11.2173 11.3381 11.3574 11.3773 11.398 11.4193 11.4414 11.4643 11.5913 11.6106 11.6305 11.6511 11.6725 11.6946 11.7174 [:, :, 3] = 1.07676 1.139 1.20484 1.25317 1.28527 1.31259 1.33825 1.08081 1.14305 1.20765 1.25357 1.28551 1.31279 1.33843 1.08496 1.1472 1.20932 1.25396 1.28575 1.31298 1.33861 1.08922 1.15086 1.21063 1.25435 1.28599 1.31319 1.3388 1.09358 1.15302 1.21182 1.25474 1.28624 1.3134 1.33899 1.096 1.15519 1.2129 1.25514 1.2865 1.31361 1.33918 1.09833 1.15739 1.2139 1.25554 1.28676 1.31383 1.33939 ⋮ ⋮ 10.3814 10.4006 10.4206 10.4412 10.4625 10.4846 10.5075 10.6106 10.6299 10.6498 10.6704 10.6918 10.7139 10.7367 10.8456 10.8648 10.8848 10.9054 10.9267 10.9488 10.9717 11.0864 11.1057 11.1256 11.1462 11.1676 11.1897 11.2125 11.3333 11.3525 11.3725 11.3931 11.4144 11.4365 11.4594 11.5863 11.6056 11.6255 11.6461 11.6675 11.6896 11.7124 ... [:, :, 148] = 1.06608 1.12771 1.1929 1.24307 1.27564 1.30306 1.32867 1.07013 1.13176 1.19619 1.24349 1.27588 1.30325 1.32885 1.07428 1.13591 1.19798 1.24391 1.27613 1.30345 1.32903 1.07854 1.13975 1.19946 1.24433 1.27638 1.30366 1.32922 1.0829 1.14192 1.20077 1.24475 1.27663 1.30387 1.32941 1.08544 1.14411 1.20198 1.24516 1.2769 1.30408 1.32961 1.08777 1.14632 1.20304 1.24558 1.27716 1.3043 1.32981 ⋮ ⋮ 10.3709 10.39 10.4098 10.4303 10.4515 10.4734 10.4961 10.6001 10.6192 10.639 10.6595 10.6806 10.7026 10.7253 10.835 10.8541 10.8739 10.8944 10.9156 10.9375 10.9602 11.0758 11.0949 11.1147 11.1352 11.1564 11.1783 11.201 11.3226 11.3417 11.3615 11.382 11.4032 11.4251 11.4478 11.5755 11.5947 11.6145 11.6349 11.6561 11.6781 11.7008 [:, :, 149] = 1.06608 1.12771 1.19289 1.24307 1.27564 1.30305 1.32867 1.07013 1.13176 1.19618 1.24349 1.27588 1.30325 1.32885 1.07428 1.13591 1.19797 1.24391 1.27612 1.30345 1.32903 1.07854 1.13974 1.19946 1.24433 1.27638 1.30366 1.32922 1.08289 1.14191 1.20076 1.24474 1.27663 1.30387 1.32941 1.08543 1.1441 1.20198 1.24516 1.27689 1.30408 1.32961 1.08776 1.14631 1.20303 1.24558 1.27716 1.3043 1.32981 ⋮ ⋮ 10.3709 10.39 10.4098 10.4303 10.4515 10.4734 10.4961 10.6001 10.6192 10.639 10.6595 10.6807 10.7026 10.7253 10.835 10.8541 10.8739 10.8944 10.9156 10.9375 10.9602 11.0758 11.0949 11.1147 11.1352 11.1564 11.1783 11.201 11.3226 11.3417 11.3615 11.382 11.4032 11.4251 11.4478 11.5755 11.5947 11.6145 11.635 11.6561 11.6781 11.7008 [:, :, 150] = 1.06607 1.12769 1.19287 1.24306 1.27564 1.30305 1.32867 1.07011 1.13174 1.19617 1.24349 1.27588 1.30325 1.32885 1.07426 1.13589 1.19796 1.2439 1.27612 1.30345 1.32903 1.07852 1.13973 1.19945 1.24432 1.27637 1.30366 1.32922 1.08288 1.1419 1.20075 1.24474 1.27663 1.30387 1.32941 1.08542 1.14409 1.20197 1.24516 1.27689 1.30408 1.32961 1.08775 1.1463 1.20303 1.24557 1.27716 1.3043 1.32981 ⋮ ⋮ 10.3709 10.39 10.4098 10.4303 10.4515 10.4734 10.4961 10.6001 10.6192 10.639 10.6595 10.6807 10.7026 10.7253 10.835 10.8541 10.8739 10.8944 10.9156 10.9375 10.9602 11.0758 11.0949 11.1147 11.1352 11.1564 11.1783 11.201 11.3226 11.3417 11.3615 11.382 11.4032 11.4251 11.4478 11.5756 11.5947 11.6145 11.635 11.6562 11.6781 11.7008
1.26183
1.27451
1.27448
1.27442
1.27433
1.2742
1.27405
1.27389
1.2737
1.26183
0.0412712
0.0421885
0.0420529
0.0419294
0.0418175
0.0417162
0.0416247
0.0415421
0.0414677
0.0412712
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Interest Rate Guess: 6.7815769938924015 Tol. achieved: 9.947598300641403e-14 Max iterations achieved. Invariant distribution did not converge. Tol 8.909360204754566e-8 Excess Demand: 96.1397276103629 Interest Rate Guess: 16.2701772192957 Tol. achieved: 5.684341886080802e-14 Tol. achieved: 3.439927856452307e-11 Excess Demand: -16.2701772192956 Interest Rate Guess: 14.896799958063223 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.247913025645094e-11 Excess Demand: -14.89679995806296 Interest Rate Guess: 10.229976972924012 Tol. achieved: 5.684341886080802e-14 Tol. achieved: 8.384340444145266e-11 Excess Demand: -10.226492237115986 Interest Rate Guess: 7.948282740177204 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.427261749017646e-11 Excess Demand: -7.8608968681130325 Interest Rate Guess: 7.364929867034802 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.659049948762544e-11 Excess Demand: -7.061141391938606 Interest Rate Guess: 7.073253430463602 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.957469571109101e-11 Excess Demand: -6.278015754218829 Interest Rate Guess: 6.927415212178001 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.961940300451388e-11 Excess Demand: -5.111187462042691 Interest Rate Guess: 6.854496103035201 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99667484208322e-11 Excess Demand: -2.9154107967896126 Interest Rate Guess: 6.818036548463801 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.996253911431774e-11 Excess Demand: 1.4938346092149244 Interest Rate Guess: 6.830388898909332 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994309720096073e-11 Excess Demand: -0.7371822913077688 Interest Rate Guess: 6.826307381641426 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99492155706605e-11 Excess Demand: -0.135175145008688 Interest Rate Guess: 6.825466963017688 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99956792716028e-11 Excess Demand: 0.002618784776688976 Interest Rate Guess: 6.825482935241583 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994291939180444e-11 Excess Demand: -4.899470898589442e-5 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994291939180444e-11 Interest Rate Guess: 6.7815769938924015 Tol. achieved: 9.947598300641403e-14 Max iterations achieved. Invariant distribution did not converge. Tol 8.909360204754566e-8 Excess Demand: 96.1397276103629 Interest Rate Guess: 16.2701772192957 Tol. achieved: 5.684341886080802e-14 Tol. achieved: 3.439927856452307e-11 Excess Demand: -16.2701772192956 Interest Rate Guess: 14.896799958063223 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.247913025645094e-11 Excess Demand: -14.89679995806296 Interest Rate Guess: 10.229976972924012 Tol. achieved: 5.684341886080802e-14 Tol. achieved: 8.384340444145266e-11 Excess Demand: -10.226492237115986 Interest Rate Guess: 7.948282740177204 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.427261749017646e-11 Excess Demand: -7.8608968681130325 Interest Rate Guess: 7.364929867034802 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.659049948762544e-11 Excess Demand: -7.061141391938606 Interest Rate Guess: 7.073253430463602 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.957469571109101e-11 Excess Demand: -6.278015754218829 Interest Rate Guess: 6.927415212178001 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.961940300451388e-11 Excess Demand: -5.111187462042691 Interest Rate Guess: 6.854496103035201 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99667484208322e-11 Excess Demand: -2.9154107967896126 Interest Rate Guess: 6.818036548463801 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.996253911431774e-11 Excess Demand: 1.4938346092149244 Interest Rate Guess: 6.830388898909332 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994309720096073e-11 Excess Demand: -0.7371822913077688 Interest Rate Guess: 6.826307381641426 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99492155706605e-11 Excess Demand: -0.135175145008688 Interest Rate Guess: 6.825466963017688 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99956792716028e-11 Excess Demand: 0.002618784776688976 Interest Rate Guess: 6.825482935241583 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994291939180444e-11 Excess Demand: -4.899470898589442e-5 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994291939180444e-11 Iter: 1 Tol: 0.2970231411907909 Iter: 2 Tol: 0.6525127611008177 Iter: 3 Tol: 0.6343309020866901 Iter: 4 Tol: 0.4400920361989762 Iter: 5 Tol: 0.35663046906266427 Iter: 6 Tol: 0.28421519583596666 Iter: 7 Tol: 0.21642352497995265 Iter: 8 Tol: 0.17630290163553575 Iter: 9 Tol: 0.13433225259457515 Iter: 10 Tol: 0.10853632579252359 Iter: 11 Tol: 0.0835877722098477 Iter: 12 Tol: 0.06687098435772842 Iter: 13 Tol: 0.05192561907601778 Iter: 14 Tol: 0.04127964167367626 Iter: 15 Tol: 0.03220153269912451 Iter: 16 Tol: 0.025517893778433276 Iter: 17 Tol: 0.019948294147966728 Iter: 18 Tol: 0.015786867057212106 Iter: 19 Tol: 0.012350920571252644 Iter: 20 Tol: 0.009770260911588835 Iter: 21 Tol: 0.007645328601490142 Iter: 22 Tol: 0.006047450128869869 Iter: 23 Tol: 0.004732245112109901 Iter: 24 Tol: 0.003743219547346577 Iter: 25 Tol: 0.002929157643086988 Iter: 26 Tol: 0.0023168997037741335 Iter: 27 Tol: 0.0018131420116329622 Iter: 28 Tol: 0.0014340196966573515 Iter: 29 Tol: 0.0011223647351030763 Iter: 30 Tol: 0.0008875485376211856 Iter: 31 Tol: 0.0006947769240586155 Iter: 32 Tol: 0.0005493169301153955 Iter: 33 Tol: 0.00043009199047006064 Iter: 34 Tol: 0.00033997902367488564 Iter: 35 Tol: 0.0002662429503050845 Iter: 36 Tol: 0.0002104179897726155 Iter: 37 Tol: 0.0001648135376655091 Iter: 38 Tol: 0.00013023191114580612 Iter: 39 Tol: 0.00010202437888384708 Iter: 40 Tol: 8.060407525789515e-5 Iter: 41 Tol: 6.315540251122798e-5 Iter: 42 Tol: 4.988869361444159e-5 Iter: 43 Tol: 3.909419726610963e-5 Iter: 44 Tol: 3.087825869307892e-5 Iter: 45 Tol: 2.4199673888780637e-5 Iter: 46 Tol: 1.9112111561803147e-5 Iter: 47 Tol: 1.4979680252658056e-5 Iter: 48 Tol: 1.1829577477584508e-5 Iter: 49 Tol: 9.272395232962083e-6 Iter: 50 Tol: 7.322070658233315e-6 Iter: 51 Tol: 5.739555398065477e-6 Iter: 52 Tol: 4.532127663381402e-6 Iter: 53 Tol: 3.552728665923155e-6 Iter: 54 Tol: 2.805261560823169e-6 Iter: 55 Tol: 2.1990941050376023e-6 Iter: 56 Tol: 1.7363894855293438e-6 Iter: 57 Tol: 1.361206632743972e-6 Iter: 58 Tol: 1.074788771759927e-6 Iter: 59 Tol: 8.425644217879835e-7 Iter: 60 Tol: 6.652744781732167e-7 Iter: 61 Tol: 5.215322245177845e-7 Iter: 62 Tol: 4.117940077819071e-7 Iter: 63 Tol: 3.2281856121585406e-7 Iter: 64 Tol: 2.548945987612683e-7 Iter: 65 Tol: 1.9981840893024128e-7 Iter: 66 Tol: 1.5777658646243253e-7 Iter: 67 Tol: 1.2368366952841825e-7 Tol. achieved: 9.766202602179419e-8
After we have computed the equilibrium, we can compute some statistics and plot the impulse response function.
0.0
0.0
-0.026967
-0.0506707
-0.0714845
-0.089734
-0.105706
-0.119653
-0.131799
-0.142339
-0.151449
-0.159284
-0.165982
-0.171669
-0.176454
-0.180438
-0.18371
-0.186348
-0.188427
-0.190009
-0.101947
-0.101636
-0.101328
-0.101026
-0.100727
-0.100434
-0.100146
-0.0998638
-0.0995871
0.0
Boppart-Krusell-Mitman
BKM have shown that we can use the IRF to simulate the model. We now use their procedure to simulate a sequence of capital. We simulate 500 periods.
The trick is to compute the capital at $t$ as linear function of past innovations:
$$K_t = \sum_{s=0}^\infty \varepsilon_{t-s}K_s ,$$
where $K_s$ is the response of capital today of shock that happened $s$ periods before. In practice, we do not actually use infinity, but a large enough number of periods such that the shock has faded out.
The beauty of this method is that, because of the linear assumption, $K_s$ is exactly what we have computed using the IRF.
Hence, to simulate a sequence of capital, we just need to simulate a sequence of innovations and take the linear product with the sequence of capital from the IRF.
Transition between different Steady-states
As a final experiment, we solve for the deterministic transition between different steady-states. We assume that at $t=2$, the government decides to change the labor tax rate from 0 to 20%. The economy slowly converges to the new steady-state.
6.82548
6.82548
6.82459
6.8238
6.82304
6.82233
6.82166
6.82103
6.82043
6.81008
300×7×150 Array{Float64, 3}: [:, :, 1] = 0.00157897 0.00626499 0.00739237 … 0.000105142 3.6129e-6 4.69392e-8 4.79216e-5 0.000281176 0.000576457 8.77768e-6 3.04509e-7 3.97933e-9 4.15127e-5 0.000236916 0.000445112 6.7215e-6 2.32913e-7 3.0416e-9 3.96897e-5 0.000207169 0.00044472 6.8011e-6 2.36082e-7 3.08626e-9 3.31098e-5 0.000185618 0.000410241 6.85957e-5 3.49768e-6 6.0387e-8 2.92901e-5 0.000159313 0.000415786 … 0.000111122 5.73328e-6 9.95834e-8 2.64265e-5 0.000155447 0.000345414 1.8288e-5 8.67673e-7 1.44005e-8 ⋮ ⋱ ⋮ 1.93977e-25 1.26056e-24 3.44152e-24 4.34657e-24 2.11268e-24 4.43261e-25 4.30931e-26 2.79915e-25 7.63935e-25 … 9.65082e-25 4.71072e-25 9.94492e-26 9.11801e-27 5.91988e-26 1.61501e-25 2.04077e-25 1.00092e-25 2.12773e-26 1.83558e-27 1.19071e-26 3.24566e-26 4.09793e-26 2.02076e-26 4.32929e-27 3.58567e-28 2.32543e-27 6.33653e-27 7.99522e-27 3.94517e-27 8.48029e-28 6.5278e-29 4.29643e-28 1.19008e-27 1.5671e-27 7.99009e-28 1.77566e-28 [:, :, 2] = 0.00157897 0.00626499 0.00739237 … 0.000105142 3.6129e-6 4.69392e-8 4.79216e-5 0.000281176 0.000576457 8.77768e-6 3.04509e-7 3.97933e-9 4.15127e-5 0.000236916 0.000445112 6.7215e-6 2.32913e-7 3.0416e-9 3.96897e-5 0.000207169 0.00044472 6.8011e-6 2.36082e-7 3.08626e-9 3.31098e-5 0.000185618 0.000410241 6.85957e-5 3.49768e-6 6.0387e-8 2.92901e-5 0.000159313 0.000415786 … 0.000111122 5.73328e-6 9.95834e-8 2.64265e-5 0.000155447 0.000345414 1.8288e-5 8.67673e-7 1.44005e-8 ⋮ ⋱ ⋮ 1.93977e-25 1.26056e-24 3.44152e-24 4.34657e-24 2.11268e-24 4.43261e-25 4.30931e-26 2.79915e-25 7.63935e-25 … 9.65082e-25 4.71072e-25 9.94492e-26 9.11801e-27 5.91988e-26 1.61501e-25 2.04077e-25 1.00092e-25 2.12773e-26 1.83558e-27 1.19071e-26 3.24566e-26 4.09793e-26 2.02076e-26 4.32929e-27 3.58567e-28 2.32543e-27 6.33653e-27 7.99522e-27 3.94517e-27 8.48029e-28 6.5278e-29 4.29643e-28 1.19008e-27 1.5671e-27 7.99009e-28 1.77566e-28 [:, :, 3] = 0.00155764 0.00617507 0.00732559 … 0.000104287 3.584e-6 4.65675e-8 5.2115e-5 0.000312208 0.000599344 9.06903e-6 3.14345e-7 4.10571e-9 4.37996e-5 0.000229351 0.000439769 6.65554e-6 2.30701e-7 3.01331e-9 3.5171e-5 0.000202263 0.000467133 6.58098e-5 3.3351e-6 5.73959e-8 3.46988e-5 0.000179817 0.000473097 0.000115146 5.92916e-6 1.02881e-7 2.83802e-5 0.000159263 0.000328404 … 1.79275e-5 8.53802e-7 1.42021e-8 2.71787e-5 0.000163383 0.000338328 1.65992e-5 7.81161e-7 1.2904e-8 ⋮ ⋱ ⋮ 1.94489e-25 1.26241e-24 3.44221e-24 4.32495e-24 2.08188e-24 4.3397e-25 4.3204e-26 2.80311e-25 7.64065e-25 … 9.60513e-25 4.63958e-25 9.72846e-26 9.14088e-27 5.92794e-26 1.61524e-25 2.03171e-25 9.85226e-26 2.07952e-26 1.84003e-27 1.19226e-26 3.24602e-26 4.08165e-26 1.98784e-26 4.22696e-27 3.59416e-28 2.32834e-27 6.33701e-27 7.9632e-27 3.87929e-27 8.27432e-28 6.54592e-29 4.30263e-28 1.19012e-27 1.55946e-27 7.83352e-28 1.72667e-28 ... [:, :, 148] = 0.00133584 0.00533309 0.00636286 … 9.06646e-5 3.11625e-6 4.04932e-8 4.88915e-5 0.000291608 0.000593684 9.03391e-6 3.13368e-7 4.09486e-9 4.21324e-5 0.000224932 0.000443226 6.72532e-6 2.33201e-7 3.04663e-9 3.3826e-5 0.000193374 0.000427984 5.25297e-5 2.64722e-6 4.54245e-8 3.11495e-5 0.000163663 0.00043724 0.000104947 5.4022e-6 9.37218e-8 2.69982e-5 0.000155732 0.000362126 … 1.87924e-5 8.89361e-7 1.47383e-8 2.56835e-5 0.00015307 0.000327356 4.13697e-5 2.08768e-6 3.58493e-8 ⋮ ⋱ ⋮ 2.33471e-25 1.49711e-24 4.03147e-24 4.94127e-24 2.32114e-24 4.66178e-25 5.23005e-26 3.35332e-25 9.0303e-25 … 1.10847e-24 5.22619e-25 1.05492e-25 1.11776e-26 7.16587e-26 1.92984e-25 2.37269e-25 1.12317e-25 2.27957e-26 2.27749e-27 1.45979e-26 3.93123e-26 4.84052e-26 2.30102e-26 4.69723e-27 4.45101e-28 2.85208e-27 7.67836e-27 9.45616e-27 4.51013e-27 9.25348e-28 8.32634e-29 5.40079e-28 1.47389e-27 1.88103e-27 9.22365e-28 1.94666e-28 [:, :, 149] = 0.00133581 0.00533304 0.00636316 … 9.06696e-5 3.11642e-6 4.04955e-8 4.88944e-5 0.000291602 0.000593673 9.03376e-6 3.13363e-7 4.0948e-9 4.21449e-5 0.000225068 0.000443312 6.72635e-6 2.33236e-7 3.04707e-9 3.38388e-5 0.000193366 0.000428003 5.26218e-5 2.65206e-6 4.55093e-8 3.11746e-5 0.000163687 0.000437352 0.000104864 5.39782e-6 9.36447e-8 2.698e-5 0.000155702 0.000361874 … 1.87883e-5 8.89214e-7 1.47364e-8 2.56857e-5 0.000153139 0.000327385 4.1431e-5 2.0909e-6 3.59059e-8 ⋮ ⋱ ⋮ 2.33914e-25 1.49995e-24 4.03915e-24 4.95087e-24 2.32565e-24 4.67078e-25 5.24048e-26 3.36002e-25 9.04839e-25 … 1.11073e-24 5.23687e-25 1.05706e-25 1.12011e-26 7.18096e-26 1.93391e-25 2.3778e-25 1.12559e-25 2.28444e-26 2.28254e-27 1.46303e-26 3.93999e-26 4.85153e-26 2.30626e-26 4.70784e-27 4.46127e-28 2.85866e-27 7.69615e-27 9.47858e-27 4.52084e-27 9.27535e-28 8.34757e-29 5.41458e-28 1.47767e-27 1.88595e-27 9.24765e-28 1.95167e-28 [:, :, 150] = 0.00134275 0.00536006 0.00639456 … 9.11152e-5 3.13173e-6 4.06943e-8 4.91557e-5 0.000293067 0.000596501 9.07657e-6 3.14847e-7 4.11418e-9 4.23772e-5 0.000226146 0.000445335 6.75691e-6 2.34295e-7 3.0609e-9 3.40175e-5 0.000194344 0.000429917 5.25898e-5 2.64986e-6 4.54662e-8 3.13323e-5 0.000164513 0.000439359 0.000105643 5.43827e-6 9.43495e-8 2.71464e-5 0.000156567 0.000364074 … 1.88922e-5 8.94077e-7 1.48164e-8 2.5829e-5 0.000153855 0.000328893 4.14555e-5 2.09178e-6 3.59177e-8 ⋮ ⋱ ⋮ 7.84223e-23 4.97683e-22 1.32311e-21 1.55222e-21 6.99828e-22 1.33903e-22 2.25626e-23 1.43137e-22 3.80421e-22 … 4.46258e-22 2.01508e-22 3.86466e-23 6.26499e-24 3.97312e-23 1.05564e-22 1.23823e-22 5.60041e-23 1.07679e-23 1.67651e-24 1.06286e-23 2.82315e-23 3.31127e-23 1.50032e-23 2.89246e-24 4.31215e-25 2.73431e-24 7.26334e-24 8.52064e-24 3.86816e-24 7.47933e-25 1.02983e-25 6.6302e-25 1.79111e-24 2.19451e-24 1.02968e-24 2.06053e-25
300×7×150 Array{Float64, 3}: [:, :, 1] = 0.0 0.0 0.0 … 0.0591291 0.108866 0.164866 0.0 0.0 0.000748691 0.0629361 0.112718 0.168736 0.0 0.0 0.00311083 0.0668396 0.116667 0.172702 0.0 0.000413831 0.00587553 0.0708417 0.120715 0.176768 0.0 0.00259961 0.00892933 0.074945 0.124864 0.180935 0.00192508 0.00487387 0.0121817 … 0.0791525 0.129118 0.185207 0.00417501 0.00725194 0.0157034 0.0834664 0.133478 0.189586 ⋮ ⋱ ⋮ 220.759 220.802 220.847 220.947 221.003 221.062 226.286 226.328 226.374 … 226.474 226.529 226.588 231.95 231.993 232.038 232.139 232.194 232.253 237.757 237.799 237.845 237.945 238.0 238.059 243.708 243.751 243.796 243.896 243.951 244.01 249.808 249.851 249.896 249.996 250.052 250.111 [:, :, 2] = 0.0 0.0 0.0 … 0.0469482 0.0868328 0.131712 0.0 0.0 0.000951872 0.0507564 0.0906861 0.135582 0.0 0.0 0.0033735 0.0546612 0.094636 0.139549 0.0 0.00146847 0.00623237 0.0586653 0.0986851 0.143616 0.00131892 0.0036669 0.0093702 0.0627713 0.102836 0.147784 0.00351505 0.00598815 0.0127469 … 0.0669814 0.107091 0.152057 0.0057744 0.00846466 0.0163229 0.0712982 0.111452 0.156437 ⋮ ⋱ ⋮ 220.78 220.814 220.85 220.931 220.975 221.022 226.306 226.34 226.377 … 226.457 226.501 226.548 231.971 232.005 232.041 232.121 232.165 232.212 237.777 237.811 237.847 237.927 237.971 238.018 243.728 243.762 243.798 243.878 243.923 243.97 249.828 249.862 249.898 249.978 250.022 250.07 [:, :, 3] = 0.0 0.0 0.0 … 0.0469552 0.0868394 0.131717 0.0 0.0 0.000952078 0.0507635 0.0906927 0.135588 0.0 0.0 0.00337421 0.0546683 0.0946427 0.139555 0.0 0.00146818 0.00623352 0.0586724 0.0986918 0.143621 0.00131866 0.00366671 0.00937174 0.0627786 0.102843 0.14779 0.00351482 0.00598801 0.0127489 … 0.0669888 0.107098 0.152062 0.00577419 0.00846461 0.0163252 0.0713056 0.111459 0.156442 ⋮ ⋱ ⋮ 220.781 220.815 220.852 220.932 220.976 221.023 226.308 226.342 226.378 … 226.458 226.502 226.549 231.972 232.006 232.042 232.123 232.167 232.214 237.778 237.812 237.849 237.929 237.973 238.02 243.729 243.763 243.8 243.88 243.924 243.971 249.829 249.863 249.9 249.98 250.024 250.071 ... [:, :, 148] = 0.0 0.0 0.0 … 0.0471185 0.086998 0.131854 0.0 0.0 0.000983622 0.0509278 0.090852 0.135725 0.0 0.0 0.00341248 0.0548337 0.0948027 0.139693 0.0 0.00148738 0.00628364 0.0588387 0.0988524 0.14376 0.00133707 0.00368729 0.00943063 0.0629458 0.103004 0.147929 0.00353359 0.00601002 0.0128161 … 0.067157 0.107259 0.152202 0.00579334 0.00849224 0.0163989 0.0714749 0.111622 0.156582 ⋮ ⋱ ⋮ 220.804 220.838 220.874 220.954 220.999 221.046 226.331 226.365 226.401 … 226.481 226.525 226.573 231.996 232.03 232.066 232.146 232.19 232.238 237.803 237.837 237.873 237.953 237.997 238.044 243.754 243.788 243.825 243.905 243.949 243.996 249.855 249.889 249.925 250.005 250.05 250.097 [:, :, 149] = 0.0 0.0 0.0 … 0.0471158 0.0869953 0.131851 0.0 0.0 0.000976847 0.050925 0.0908493 0.135722 0.0 0.0 0.00340779 0.0548309 0.0947999 0.13969 0.0 0.00148054 0.00627856 0.0588359 0.0988497 0.143757 0.00133037 0.00368083 0.00942562 0.0629431 0.103001 0.147926 0.00352695 0.00600339 0.0128118 … 0.0671543 0.107257 0.152199 0.00578667 0.00848487 0.0163948 0.0714721 0.111619 0.15658 ⋮ ⋱ ⋮ 220.804 220.838 220.874 220.955 220.999 221.046 226.331 226.365 226.401 … 226.481 226.526 226.573 231.996 232.03 232.066 232.146 232.191 232.238 237.803 237.837 237.873 237.953 237.997 238.044 243.755 243.788 243.825 243.905 243.949 243.996 249.855 249.889 249.925 250.005 250.05 250.097 [:, :, 150] = 0.0 0.0 0.0 … 0.0471289 0.0870093 0.131866 0.0 0.0 0.000984348 0.0509382 0.0908633 0.135737 0.0 0.0 0.00341528 0.0548441 0.0948139 0.139705 0.0 0.00148672 0.00628746 0.0588491 0.0988636 0.143772 0.00133612 0.003687 0.00943521 0.0629563 0.103015 0.147941 0.0035327 0.00600976 0.0128217 … 0.0671675 0.107271 0.152214 0.00579244 0.00849238 0.016405 0.0714853 0.111633 0.156594 ⋮ ⋱ ⋮ 220.804 220.838 220.874 220.954 220.998 221.045 226.331 226.365 226.401 … 226.481 226.525 226.572 231.996 232.03 232.066 232.146 232.19 232.237 237.802 237.836 237.873 237.953 237.997 238.044 243.754 243.788 243.824 243.904 243.949 243.996 249.855 249.889 249.925 250.005 250.049 250.096
300×7×150 Array{Float64, 3}: [:, :, 1] = 1.06607 1.12769 1.19287 1.24306 1.27564 1.30305 1.32867 1.07011 1.13174 1.19617 1.24349 1.27588 1.30325 1.32885 1.07426 1.13589 1.19796 1.2439 1.27612 1.30345 1.32903 1.07852 1.13973 1.19945 1.24432 1.27637 1.30366 1.32922 1.08288 1.1419 1.20075 1.24474 1.27663 1.30387 1.32941 1.08542 1.14409 1.20197 1.24516 1.27689 1.30408 1.32961 1.08775 1.1463 1.20303 1.24557 1.27716 1.3043 1.32981 ⋮ ⋮ 10.3709 10.39 10.4098 10.4303 10.4515 10.4734 10.4961 10.6001 10.6192 10.639 10.6595 10.6807 10.7026 10.7253 10.835 10.8541 10.8739 10.8944 10.9156 10.9375 10.9602 11.0758 11.0949 11.1147 11.1352 11.1564 11.1783 11.201 11.3226 11.3417 11.3615 11.382 11.4032 11.4251 11.4478 11.5756 11.5947 11.6145 11.635 11.6562 11.6781 11.7008 [:, :, 2] = 1.10582 1.15511 1.20726 1.24782 1.27383 1.29567 1.31608 1.10986 1.15916 1.21036 1.24824 1.27407 1.29586 1.31626 1.11401 1.16331 1.21209 1.24866 1.27431 1.29606 1.31644 1.11827 1.1661 1.21348 1.24908 1.27456 1.29627 1.31663 1.12131 1.16826 1.2147 1.24949 1.27481 1.29647 1.31682 1.12358 1.17041 1.21579 1.2499 1.27507 1.29669 1.31701 1.1259 1.17251 1.2168 1.2503 1.27534 1.29691 1.31721 ⋮ ⋮ 10.3899 10.4053 10.4211 10.4375 10.4545 10.472 10.4902 10.6193 10.6347 10.6505 10.6669 10.6839 10.7014 10.7196 10.8545 10.8698 10.8856 10.902 10.919 10.9366 10.9547 11.0955 11.1108 11.1267 11.143 11.16 11.1776 11.1957 11.3425 11.3578 11.3737 11.3901 11.407 11.4246 11.4428 11.5957 11.6111 11.6269 11.6433 11.6603 11.6778 11.696 [:, :, 3] = 1.10577 1.15506 1.20721 1.24776 1.27376 1.2956 1.31601 1.10982 1.15911 1.21031 1.24818 1.274 1.2958 1.31619 1.11397 1.16326 1.21203 1.2486 1.27425 1.29599 1.31637 1.11822 1.16605 1.21343 1.24902 1.2745 1.2962 1.31656 1.12126 1.16821 1.21465 1.24943 1.27475 1.29641 1.31675 1.12353 1.17036 1.21574 1.24984 1.27501 1.29662 1.31695 1.12585 1.17246 1.21674 1.25024 1.27527 1.29684 1.31715 ⋮ ⋮ 10.3903 10.4056 10.4214 10.4378 10.4548 10.4723 10.4905 10.6197 10.635 10.6508 10.6672 10.6842 10.7018 10.7199 10.8548 10.8701 10.886 10.9024 10.9193 10.9369 10.9551 11.0959 11.1112 11.127 11.1434 11.1604 11.1779 11.1961 11.3429 11.3582 11.3741 11.3904 11.4074 11.425 11.4432 11.5961 11.6114 11.6273 11.6437 11.6606 11.6782 11.6964 ... [:, :, 148] = 1.10498 1.15424 1.20635 1.24673 1.27266 1.29446 1.31484 1.10903 1.15829 1.20942 1.24715 1.2729 1.29465 1.31502 1.11318 1.16244 1.21114 1.24757 1.27314 1.29485 1.3152 1.11743 1.16521 1.21252 1.24798 1.27339 1.29506 1.31539 1.12046 1.16737 1.21373 1.24839 1.27365 1.29526 1.31558 1.12273 1.16951 1.21482 1.2488 1.2739 1.29548 1.31578 1.12505 1.17161 1.21581 1.2492 1.27417 1.2957 1.31598 ⋮ ⋮ 10.3959 10.4113 10.4271 10.4435 10.4604 10.478 10.4961 10.6255 10.6408 10.6567 10.673 10.69 10.7076 10.7257 10.8608 10.8762 10.892 10.9084 10.9253 10.9429 10.961 11.102 11.1174 11.1332 11.1496 11.1665 11.1841 11.2022 11.3493 11.3646 11.3804 11.3968 11.4138 11.4313 11.4495 11.6027 11.618 11.6338 11.6502 11.6672 11.6847 11.7029 [:, :, 149] = 1.10498 1.15424 1.20635 1.24673 1.27266 1.29446 1.31485 1.10903 1.15829 1.20942 1.24715 1.2729 1.29465 1.31502 1.11318 1.16244 1.21114 1.24757 1.27315 1.29485 1.31521 1.11743 1.16521 1.21252 1.24798 1.27339 1.29506 1.31539 1.12046 1.16737 1.21374 1.24839 1.27365 1.29527 1.31558 1.12274 1.16952 1.21482 1.2488 1.27391 1.29548 1.31578 1.12506 1.17162 1.21582 1.2492 1.27417 1.2957 1.31598 ⋮ ⋮ 10.3959 10.4112 10.4271 10.4435 10.4604 10.478 10.4961 10.6255 10.6408 10.6567 10.673 10.69 10.7075 10.7257 10.8608 10.8761 10.892 10.9084 10.9253 10.9429 10.961 11.102 11.1174 11.1332 11.1496 11.1665 11.1841 11.2022 11.3493 11.3646 11.3804 11.3968 11.4138 11.4313 11.4495 11.6027 11.618 11.6338 11.6502 11.6672 11.6847 11.7029 [:, :, 150] = 1.10499 1.15425 1.20636 1.24673 1.27266 1.29446 1.31485 1.10904 1.1583 1.20943 1.24715 1.2729 1.29465 1.31502 1.11319 1.16245 1.21115 1.24757 1.27315 1.29485 1.31521 1.11744 1.16522 1.21253 1.24798 1.27339 1.29506 1.31539 1.12047 1.16738 1.21374 1.24839 1.27365 1.29527 1.31558 1.12274 1.16953 1.21482 1.2488 1.27391 1.29548 1.31578 1.12506 1.17162 1.21582 1.24921 1.27417 1.2957 1.31598 ⋮ ⋮ 10.3959 10.4112 10.4271 10.4434 10.4604 10.478 10.4961 10.6255 10.6408 10.6566 10.673 10.69 10.7075 10.7257 10.8608 10.8761 10.892 10.9083 10.9253 10.9429 10.961 11.102 11.1173 11.1332 11.1495 11.1665 11.1841 11.2022 11.3493 11.3646 11.3804 11.3968 11.4137 11.4313 11.4495 11.6027 11.618 11.6338 11.6502 11.6671 11.6847 11.7029
1.26183
1.26183
1.26177
1.26172
1.26168
1.26163
1.26159
1.26155
1.26152
1.26089
0.0412712
0.0412712
0.0412792
0.0412863
0.041293
0.0412994
0.0413054
0.0413111
0.0413165
0.0414094
0.0
0.252964
0.252953
0.252943
0.252934
0.252925
0.252917
0.252909
0.252902
0.252775
Interest Rate Guess: 6.7815769938924015 Tol. achieved: 9.947598300641403e-14 Max iterations achieved. Invariant distribution did not converge. Tol 8.909360204754566e-8 Excess Demand: 96.1397276103629 Interest Rate Guess: 16.2701772192957 Tol. achieved: 5.684341886080802e-14 Tol. achieved: 3.439927856452307e-11 Excess Demand: -16.2701772192956 Interest Rate Guess: 14.896799958063223 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.247913025645094e-11 Excess Demand: -14.89679995806296 Interest Rate Guess: 10.229976972924012 Tol. achieved: 5.684341886080802e-14 Tol. achieved: 8.384340444145266e-11 Excess Demand: -10.226492237115986 Interest Rate Guess: 7.948282740177204 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.427261749017646e-11 Excess Demand: -7.8608968681130325 Interest Rate Guess: 7.364929867034802 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.659049948762544e-11 Excess Demand: -7.061141391938606 Interest Rate Guess: 7.073253430463602 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.957469571109101e-11 Excess Demand: -6.278015754218829 Interest Rate Guess: 6.927415212178001 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.961940300451388e-11 Excess Demand: -5.111187462042691 Interest Rate Guess: 6.854496103035201 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99667484208322e-11 Excess Demand: -2.9154107967896126 Interest Rate Guess: 6.818036548463801 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.996253911431774e-11 Excess Demand: 1.4938346092149244 Interest Rate Guess: 6.830388898909332 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994309720096073e-11 Excess Demand: -0.7371822913077688 Interest Rate Guess: 6.826307381641426 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99492155706605e-11 Excess Demand: -0.135175145008688 Interest Rate Guess: 6.825466963017688 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.99956792716028e-11 Excess Demand: 0.002618784776688976 Interest Rate Guess: 6.825482935241583 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994291939180444e-11 Excess Demand: -4.899470898589442e-5 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.994291939180444e-11 Interest Rate Guess: 6.7815769938924015 Tol. achieved: 9.947598300641403e-14 Max iterations achieved. Invariant distribution did not converge. Tol 4.708622348015973e-8 Excess Demand: 79.46027589335081 Interest Rate Guess: 16.2701772192957 Tol. achieved: 2.842170943040401e-14 Tol. achieved: 2.3517838718123407e-11 Excess Demand: -16.27017721929559 Interest Rate Guess: 14.657511633677938 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 2.912802464505315e-11 Excess Demand: -14.657511633677823 Interest Rate Guess: 10.11033281073137 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.315739846194049e-11 Excess Demand: -10.109642530341421 Interest Rate Guess: 7.918371699629043 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.114914378827166e-11 Excess Demand: -7.878072168077321 Interest Rate Guess: 7.349974346760722 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.893347252543094e-11 Excess Demand: -7.182628188101754 Interest Rate Guess: 7.065775670326562 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.935967326679673e-11 Excess Demand: -6.588100728586724 Interest Rate Guess: 6.923676332109482 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.977827591933774e-11 Excess Demand: -5.790377801771859 Interest Rate Guess: 6.852626663000941 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.991876076531625e-11 Excess Demand: -4.353908828712924 Interest Rate Guess: 6.817101828446671 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.998236266683946e-11 Excess Demand: -1.4492111226370321 Interest Rate Guess: 6.800265445528016 Tol. achieved: 8.526512829121202e-14 Max iterations achieved. Invariant distribution did not converge. Tol 2.118685086312938e-10 Excess Demand: 3.8375202926622904 Interest Rate Guess: 6.808683636987343 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.996429552183717e-11 Excess Demand: 0.37917572231460905 Interest Rate Guess: 6.810429423901084 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.997582796350546e-11 Excess Demand: -0.08799884576473271 Interest Rate Guess: 6.810100580586706 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.998254047599575e-11 Excess Demand: -0.004365157259480945 Interest Rate Guess: 6.810083612357462 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.998973090480368e-11 Excess Demand: 2.689066196381873e-6 Tol. achieved: 8.526512829121202e-14 Tol. achieved: 9.998973090480368e-11 Iter: 1 Tol: 0.0982518416599083 Iter: 2 Tol: 0.1949876578293459 Iter: 3 Tol: 0.1758245031766421 Iter: 4 Tol: 0.13912320804336886 Iter: 5 Tol: 0.11991650148743016 Iter: 6 Tol: 0.10022398243463826 Iter: 7 Tol: 0.08414141823639198 Iter: 8 Tol: 0.07095048325955045 Iter: 9 Tol: 0.05947602654959905 Iter: 10 Tol: 0.05008456313488452 Iter: 11 Tol: 0.04206765649741229 Iter: 12 Tol: 0.03536180017791235 Iter: 13 Tol: 0.029741017434847805 Iter: 14 Tol: 0.024978364208545045 Iter: 15 Tol: 0.021018372564653554 Iter: 16 Tol: 0.01764869457450491 Iter: 17 Tol: 0.01485116114857199 Iter: 18 Tol: 0.012471241869954852 Iter: 19 Tol: 0.010492823592223921 Iter: 20 Tol: 0.008812908119161023 Iter: 21 Tol: 0.0074134577394655565 Iter: 22 Tol: 0.006227694679542317 Iter: 23 Tol: 0.005237885543085241 Iter: 24 Tol: 0.004400763878907199 Iter: 25 Tol: 0.003700828622651642 Iter: 26 Tol: 0.0031097214794595374 Iter: 27 Tol: 0.002614862679585883 Iter: 28 Tol: 0.002197399126973032 Iter: 29 Tol: 0.001847584273305003 Iter: 30 Tol: 0.0015527157692316607 Iter: 31 Tol: 0.001305460260104141 Iter: 32 Tol: 0.001097164496895786 Iter: 33 Tol: 0.0009224140220682742 Iter: 34 Tol: 0.0007752633604427572 Iter: 35 Tol: 0.000651763641491776 Iter: 36 Tol: 0.0005478039466666473 Iter: 37 Tol: 0.000460527712354164 Iter: 38 Tol: 0.0003870792411078128 Iter: 39 Tol: 0.00032540363824029583 Iter: 40 Tol: 0.0002735103257904825 Iter: 41 Tol: 0.0002299268942929089 Iter: 42 Tol: 0.00019326219433768443 Iter: 43 Tol: 0.00016246421125121202 Iter: 44 Tol: 0.00013655876382490106 Iter: 45 Tol: 0.00011479582269924293 Iter: 46 Tol: 9.649211960294224e-5 Iter: 47 Tol: 8.111381371112003e-5 Iter: 48 Tol: 6.818106718675665e-5 Iter: 49 Tol: 5.7314413309583756e-5 Iter: 50 Tol: 4.817652649791171e-5 Iter: 51 Tol: 4.0497957405349894e-5 Iter: 52 Tol: 3.404136441620409e-5 Iter: 53 Tol: 2.8615581983970628e-5 Iter: 54 Tol: 2.4053498520970606e-5 Iter: 55 Tol: 2.0219583456437817e-5 Iter: 56 Tol: 1.6996104608146823e-5 Iter: 57 Tol: 1.428702989691999e-5 Iter: 58 Tol: 1.200937495582366e-5 Iter: 59 Tol: 1.0095127455755915e-5 Iter: 60 Tol: 8.48577129097805e-6 Iter: 61 Tol: 7.133156682215258e-6 Iter: 62 Tol: 5.996007152120342e-6 Iter: 63 Tol: 5.040246420229266e-6 Iter: 64 Tol: 4.236750655195465e-6 Iter: 65 Tol: 3.5614091347113686e-6 Iter: 66 Tol: 2.9936676639863435e-6 Iter: 67 Tol: 2.5164712837977277e-6 Iter: 68 Tol: 2.115311096950734e-6 Iter: 69 Tol: 1.7781246572923237e-6 Iter: 70 Tol: 1.4946686706096557e-6 Iter: 71 Tol: 1.2564132951808915e-6 Iter: 72 Tol: 1.056125734422153e-6 Iter: 73 Tol: 8.877749690938685e-7 Iter: 74 Tol: 7.46253378203221e-7 Iter: 75 Tol: 6.272968811060764e-7 Iter: 76 Tol: 5.272985674764641e-7 Iter: 77 Tol: 4.432443398982855e-7 Iter: 78 Tol: 3.725863946257846e-7 Iter: 79 Tol: 3.1319393212214663e-7 Iter: 80 Tol: 2.632675162317355e-7 Iter: 81 Tol: 2.2130108412454774e-7 Iter: 82 Tol: 1.8602344642459911e-7 Iter: 83 Tol: 1.5637021011372099e-7 Iter: 84 Tol: 1.3144321986402474e-7 Iter: 85 Tol: 1.1049013526331919e-7 Tol. achieved: 9.287688929049409e-8