## Macroeconomics I

# Search and Matching: The Diamond-Mortensen-Pissarides Model 

Tomás R. Martinez<br>INSPER

## Introduction

- Thus far, we have assumed a frictionless labor market, where the supply equates the demand.
- In this case, there is no involuntary unemployment and the equilibrium wage clears the labor market.
- This is counterfactual as many individuals who want to work cannot find jobs (especially in recessions).
- In this lecture, we include search frictions in the labor market. It takes time, effort, and resources for workers and firms to match with each other.


## Search Frictions

- Two main approaches use search frictions:
- Equilibrium wage-posting (the Burdett-Mortensen model): used to study wage dispersion and monopsony. The micro approach.
- Search-and-Matching (the Diamond-Mortensen-Pissarides model): used to study equilibrium unemployment. The macro approach.
- We will focus on the second case, the search-and-matching framework with random search.
- This model gave Diamond-Mortensen-Pissarides the 2010 economics Nobel prize.
- There is also a (kind of) third approach, which is in between the two cases called directed/competitive search. Definitely used more by macro researchers.


## Unemployment Rate in the US



Source: CPS (via PhD Macrobook)

## What We Learn in This Chapter

- How solve the standard Diamond-Mortensen-Pissarides framework.
- When the model is efficient.
- Some puzzles and possible solutions and extension.
- How to introduce the search and matching in a RBC model.


## References

- PhD Macrobook: Ch. 18.
- Rogerson, Shimer \& Wright (2005): Search-Theoretic Models of the Labor Market: A Survey. Journal of Economic Literature.
- Pissarides (2000): Ch. 1 \& 2.
- Ljungqvist, Lars and Thomas J. Sargent: Ch. 18.


## Labor Market Flows

## Measuring the Labor Market

## General Definitions:

- Employed: They worked during the survey reference week.
- It includes formal or informal workers, employees, unpaid family workers.
- Unemployed: Did not work during the reference week, but they looked for a job.
- Out of the labor force: Did not look for a job in the reference week.
- Students, retired, stay-at-home dad/mom, but also discouraged workers.

Labor force: Employed + unemployed.

## CPS Definitions



## CPS Definitions



## IBGE Definitions



Source: IBGE

## Brazil: Third Quarter 2023



Source: IBGE

## Stocks and Flows: USA

Figure: Fraction of employed workers that flows into unemployment (gross flow)


Source: Fallick and Fleischman (2004) (via PhD macrobook).

## USA Stocks and Flows: E to U \& N



Source: Fallick and Fleischman (2004) (via PhD macrobook).

## USA Stocks and Flows: U to E \& N



Source: Fallick and Fleischman (2004) (via PhD macrobook).

## USA Stocks and Flows: $N$ to $E \& U$



Source: Fallick and Fleischman (2004) (via PhD macrobook).

## A Stock \& Flow Unemployment Model

- Let us consider a simple unemployment model. Ignore flows-in-out of the labor force.
- Normalize the labor force to 1 , so:

$$
e_{t}+u_{t}=1
$$

where $e_{t}$ is the employment and $u_{t}$ the unemployment rate at time $t$.

- The law of motion of the unemployment rate is:

$$
u_{t+1}=u_{t}(1-\lambda)+\sigma \underbrace{\left(1-u_{t}\right)}_{e_{t}}
$$

where $\lambda$ is the job-finding rate and $\sigma$ the job-separation rate.

## A Stock \& Flow Unemployment Model

- In the steady state, the unemployment rate is constant, $u_{t+1}=u_{t}=u_{s s}$, and is:

$$
u_{s s}=u_{s s}(1-\lambda)+\sigma\left(1-u_{s s}\right) \quad \Leftrightarrow \quad u_{s s}=\frac{\sigma}{\lambda+\sigma}
$$

- Subtracting the LOM at $t$ from the one at $t-1$, we can find speed of convergence to the SS:

$$
u_{t+1}-u_{t}=\underbrace{(1-\lambda-\sigma)}_{\text {speed of convergence }}\left(u_{t}-u_{t-1}\right)
$$

- Finally, the job-finding rate is also linked to expected unemployment duration: $D=1 / \lambda$.

The Diamond-Mortensen-Pissarides Model

## The Diamond-Mortensen-Pissarides (DMP) Model

- The stock and flow is useful to think about unemployment, but it does not say anything about how job-finding rate or the separation rate are defined.
- We will use search frictions to endogenize the job-finding rates (and later separation rates).
- Again, we assume workers are either employed or unemployed (normalize the population to one). Unemployed workers search for jobs.
- Firms search for workers by posting (costly) vacancies. Once an unemployed worker match with a firm, the firm produces $y$ and pays a wage $w$.
- Search is random: all vacancies have the same chance of finding workers, and all workers have the same chance of finding the vacancies.


## The Matching Function

- The number of matches depends on the how many vacancies and unemployed workers are in the economy. We summarize it through a matching function:

$$
\mathcal{M}_{t+1}=M\left(u_{t}, v_{t}\right)
$$

where $u_{t}$ and $v_{t}$ are the number of unemployment and vacancies at $t$, and $\mathcal{M}_{t+1}$ is the number of matches in the next period.

- We assume that $M$ is increasing in both arguments, concave, and homogenous of degree 1 (i.e., CRS).
- The matching function is a black box. It summarizes the complex problem of recruiting activities, search costs, etc, but it is analytically convenient and it has been estimated for many countries.


## The Matching Function

- Since search is random, the the probability of a worker meeting a firm (i.e., job-finding rate) is:

$$
\frac{M\left(u_{t}, v_{t}\right)}{u_{t}}=M\left(1, \frac{v_{t}}{u_{t}}\right)=M\left(1, \theta_{t}\right) \equiv \lambda_{w}\left(\theta_{t}\right)
$$

where $\theta_{t} \equiv v_{t} / u_{t}$ is the labor market tightness.

- Similarly, the probability of a vacancy meeting a worker is:

$$
\frac{M\left(u_{t}, v_{t}\right)}{v_{t}}=M\left(\frac{u_{t}}{v_{t}}, 1\right)=M\left(\frac{1}{\theta_{t}}, 1\right) \equiv \lambda_{f}\left(\theta_{t}\right)
$$

note that $\lambda_{w}\left(\theta_{t}\right)=\theta_{t} \lambda_{f}\left(\theta_{t}\right)$

## Beveridge Curve

- The job-finding and vacancy filling probability depend on the number of traders.
- The higher is the unemployment, the lower is the probability the worker finds a job $\Rightarrow$ Congestion externalities.
- Substituting the job-finding probability in the SS unemployment rate:

$$
u_{s s}=\frac{\sigma}{\lambda_{w}\left(v / u_{s s}\right)+\sigma} \quad \Leftrightarrow \quad M\left(v, u_{s s}\right)+\sigma u_{s s}=\sigma
$$

- There is a negative relation between unemployment rate and vacancy rate $\Rightarrow$ This is known as the Beveridge curve.


## Beveridge Curve: US



Source: CPS and JOLTS (via PhD macrobook).

## Beveridge Curve



Source: The Wall Street Journal

## Matched Firms

- What determine the labor market tightness?
- For simplicity, imagine that a firm hires only one worker. Ignore capital.
- Assume a match between one firm and one worker produce $z_{t}$ goods, where $z_{t}$ follows a 1st order Markov process.
- Let the value of matched firm be:

$$
J(z)=z-w(z)+\beta \mathbb{E}\left[(1-\sigma) J\left(z^{\prime}\right)+\sigma V\left(z^{\prime}\right) \mid z\right]
$$

where $w(z)$ is the wage paid to the worker, $z-w(z)$ is the flow profit, $\beta \in(0,1)$ and $V\left(z^{\prime}\right)$ the value of a unmatched firm with open vacancy.

## Open Vacancy

- The Bellman equation of a firm with open vacancy is:

$$
V(z)=-\kappa+\beta \mathbb{E}\left[\lambda_{f}(\theta) J\left(z^{\prime}\right)+\left(1-\lambda_{f}(\theta)\right) V\left(z^{\prime}\right) \mid z\right]
$$

where $\kappa$ is the cost of posting a vacancy. Some models assume it depends on $z$.

- Anyone can set up a vacancy. Thus, if the value of opening a vacancy is $>0$ more firms will do it. But more vacancies reduce the probability the vacancy will be filled.
- In equilibrium, the value of opening a vacancy is driven down to zero. This is the free entry condition:

$$
\begin{equation*}
V(z)=0 \quad \Rightarrow \quad \frac{\kappa}{\lambda_{f}(\theta)}=\beta \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right] \tag{1}
\end{equation*}
$$

## Job Creation Condition

- Using the free entry condition in the Bellman eq. of a matched firm:

$$
J(z)=z-w(z)+\beta(1-\sigma) \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right]=z-w(z)+(1-\sigma) \frac{\kappa}{\lambda_{f}(\theta)}
$$

- Using Equation (1) and substituting $J\left(z^{\prime}\right)$ using the equation above:

$$
\begin{aligned}
\frac{\kappa}{\lambda_{f}(\theta)} & =\beta \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right] \\
\frac{\kappa}{\lambda_{f}(\theta)} & =\beta \mathbb{E}\left[\left.z^{\prime}-w\left(z^{\prime}\right)+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta^{\prime}\right)} \right\rvert\, z\right]
\end{aligned}
$$

- This is the intertemporal job creation condition. What is the intuition of this equation?


## Digression: Sequential Problem

- To gather intuition, let's solve the problem again using the sequential approach.
- Suppose there is a representative firm that is deciding how many vacancies to post in order to maximize the sum of discount profits. The sequential problem is:

$$
\begin{aligned}
\max _{e_{t+1}, v_{t}} & \mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \beta^{t}\left(z_{t} e_{t}-w_{t} e_{t}-\kappa v_{t}\right)\right] \\
\text { s.t. } & e_{t+1}=(1-\sigma) e_{t}+\lambda_{f}\left(\theta_{t}\right) v_{t}
\end{aligned}
$$

- Note that we are using the employment law of motion (instead of unemployment). The representative firm chooses employment in $t+1$ by posting more vacancies in $t$ (taking as given $\theta_{t}$ ).


## Digression: Sequential Problem

- Let $\mu_{t}$ be the Lagrange multiplier. The Lagragean is:

$$
\mathcal{L}=\mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \beta^{t}\left(z_{t} e_{t}-w_{t} e_{t}-\kappa v_{t}\right)+\mu_{t}\left((1-\sigma) e_{t}+\lambda_{f}\left(\theta_{t}\right) v_{t}-e_{t+1}\right)\right]
$$

and the f.o.c. with respect to $v_{t}$ and $e_{t+1}$

$$
\beta^{t} \frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)}=\mu_{t} \quad \text { and } \quad \mu_{t}=\mathbb{E}_{t}\left[\beta^{t+1}\left(z_{t+1}-w_{t+1}\right)+\mu_{t+1}(1-\sigma)\right]
$$

which implies the job creation condition:

$$
\frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)}=\beta \mathbb{E}_{t}\left[z_{t+1}-w_{t+1}+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)}\right]
$$

## Job Creation Condition

$$
\frac{\kappa}{\lambda_{f}(\theta)}=\beta \mathbb{E}\left[\left.z^{\prime}-w\left(z^{\prime}\right)+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta^{\prime}\right)} \right\rvert\, z\right]
$$

- Intuition:
- The LHS: marginal cost of hiring an additional worker (cost of vacancy discounted by the vacancy filling probability).
- The RHS: discounted marginal benefit of hiring an additional worker, the net profit in $t$ $\left(z^{\prime}-w\left(z^{\prime}\right)\right)$ plus the continuation value if the match survives (which is equal of the mg . value of hiring in $t+1$ ).
- Lower wage $\rightarrow$ higher value of a job $\rightarrow$ more vacancies $\rightarrow$ higher tightness.
- To close the model, we must determine wages.


## Workers

- Assume infinitely-lived workers, with linear utility that do not save:

$$
E_{0}\left[\sum_{t=0}^{\infty} \beta^{t} c_{t}\right]
$$

- Workers earn the wage $w$ when employed and $b$ when unemployed ( $b$ is the outside option, unemployment benefits or home production).
- The Bellman Equations for employed , $W(z)$, and unemployed workers, $U(z)$, are:

$$
\begin{aligned}
W(z) & =w(z)+\beta \mathbb{E}\left[(1-\sigma) W\left(z^{\prime}\right)+\sigma U\left(z^{\prime}\right) \mid z\right] \\
U(z) & =b+\beta \mathbb{E}\left[\lambda_{w}(\theta) W\left(z^{\prime}\right)+\left(1-\lambda_{w} \theta\right) U\left(z^{\prime}\right) \mid z\right]
\end{aligned}
$$

## Matching Protocol

- Workers always accept the match as long $W>U$. Firms always accept the match as long $J>V=0$.
- In every period, the match generates $z$, if they separate the worker generates $b$ and the firm nothing. As long $z>b$, the match generates positive surplus.
- How can we split the surplus through wages? Any wage $w \in(z, b)$ is accepted by both the firm and the worker.
- We assume that the firm and the worker split the surplus following the Generalized Nash Bargaining protocol.


## Nash Bargaining

- The Nash Bargaining splits the surplus so that the weighted product of surpluses of each party is maximized. The problem solves:

$$
\max _{w}(W(z ; w)-U(z))^{\gamma}(J(z ; w)-V(z))^{1-\gamma}
$$

where $\gamma$ is the weight of the worker (i.e., her bargaining power).

- The f.o.c gives:

$$
\begin{equation*}
(1-\gamma)(W(z ; w)-U(z))=\gamma(J(z ; w)-V(z)) \tag{2}
\end{equation*}
$$

- Note that $V(z)=0$ by the FE condition.


## Wage Equation: Math

- Multiply the Equation $J(z)$ by $\gamma$ :

$$
\gamma J(z)=\gamma(z-w)+\beta \gamma(1-\sigma) \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right]
$$

- Subtract $W(z)$ by $U(z)$ and multiply by $(1-\gamma)$

$$
\begin{aligned}
& (1-\gamma)(W(z)-U(z))=(1-\gamma)(w-b)+\ldots \\
& \quad \ldots \beta \mathbb{E}\left[(1-\sigma)(1-\gamma)\left(W\left(z^{\prime}\right)-U\left(z^{\prime}\right)\right)-\lambda_{w}(\theta)(1-\gamma)\left(W\left(z^{\prime}\right)-U\left(z^{\prime}\right)\right) \mid z\right]
\end{aligned}
$$

- Combining the previous two equations with Equation (2):

$$
\begin{aligned}
& \gamma(z-w)+\beta \gamma(1-\sigma) \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right]=(1-\gamma)(w-b)+\ldots \\
& \quad \ldots \beta \mathbb{E}\left[(1-\sigma)(1-\gamma)\left(W\left(z^{\prime}\right)-U\left(z^{\prime}\right)\right)-\lambda_{w}(\theta)(1-\gamma)\left(W\left(z^{\prime}\right)-U\left(z^{\prime}\right)\right) \mid z\right]
\end{aligned}
$$

## Wage Equation: Math

- Re-arranging:

$$
\begin{aligned}
& w=(1-\gamma) b+\gamma z+\ldots \\
& \beta \mathbb{E}[(1-\sigma)(\underbrace{\left(\gamma J\left(z^{\prime}\right)-(1-\gamma)\left(W\left(z^{\prime}\right)-U\left(z^{\prime}\right)\right)\right.}_{=0 \text { by Eq. (2) }}+(1-\gamma) \lambda_{w}(\theta)\left(W\left(z^{\prime}\right)-U\left(z^{\prime}\right)\right)]
\end{aligned}
$$

- Thus, the wage equation:

$$
\begin{equation*}
w=b+\gamma(z-b)+\beta(1-\gamma) \lambda_{w}(\theta) \mathbb{E}\left[W\left(z^{\prime}\right)-U\left(z^{\prime}\right) \mid z\right] \tag{3}
\end{equation*}
$$

- Depends on:
- the share of production surplus: $b+\gamma(z-b)$;
- the opportunity cost of looking for a job, that depends on the $\lambda_{w}(\theta)$ and the future economic conditions.


## Wage Equation

- Substituting (2) in the FE condition, (1), then:

$$
\frac{\kappa}{\lambda_{f}(\theta)}=\beta \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right]=\frac{\beta(1-\gamma)}{\gamma} \mathbb{E}[W(z)-U(z) \mid z]
$$

- Thus, we can write the wage equation as:

$$
\begin{aligned}
& w=b+\gamma(z-b)+\beta(1-\gamma) \lambda_{w}(\theta) \mathbb{E}\left[W\left(z^{\prime}\right)-U\left(z^{\prime}\right) \mid z\right] \\
& w=b+\gamma(z-b)+\gamma \kappa \theta
\end{aligned}
$$

- So the wage only depends on fluctuations on the productivity, labor market tightness and parameters.


## Equilibrium

- The model equilibrium is summarized by three equations:

$$
\begin{array}{r}
\frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)}=\beta \mathbb{E}_{t}\left[z_{t+1}-w_{t+1}+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)}\right] \\
w_{t}=b+\gamma\left(z_{t}-b\right)+\gamma \kappa \theta_{t} \\
u_{t+1}=u_{t}\left(1-\lambda_{w}\left(\theta_{t}\right)\right)+\sigma\left(1-u_{t}\right)
\end{array}
$$

## (Job Creation)

(Wage Equation)
(Unemployment LOM)

- Substituting the wage equation in the job creation:

$$
\frac{\kappa}{(1-\gamma) \lambda_{f}\left(\theta_{t}\right)}=\beta \mathbb{E}_{t}\left[z_{t+1}-b+\frac{1-\sigma-\gamma \lambda_{w}\left(\theta_{t+1}\right)}{1-\gamma} \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)}\right]
$$

## Equilibrium: Steady State

- In the Steady State, we must determine $v_{s s}$ and $u_{s s}$. The job creation in the steady state,

$$
\frac{\kappa}{(1-\gamma) \lambda_{f}\left(\theta_{s s}\right)}=\beta\left[z_{s s}-b+\frac{1-\sigma-\gamma \lambda_{w}\left(\theta_{s s}\right)}{1-\gamma} \frac{\kappa}{\lambda_{f}\left(\theta_{s s}\right)}\right],
$$

together with the Beveridge curve,

$$
u_{s s}=\frac{\sigma}{\lambda_{w}\left(v_{s s} / u_{s s}\right)+\sigma},
$$

determines the steady state value of $v_{s s}$ and $u_{s s}$ (and $\left.\theta_{s s} \equiv v_{s s} / u_{s s}\right)$.

- What happen when $z$ goes down?


## Steady State: Permanent Fall in $z$



- JC represents the number of $v$ as a function of $u$.
- When $z$ falls, firms have less incentives to create vacancies.
- The line becomes flatter $\rightarrow$ higher $w$ and less $v$.

Source: PhD Macrobook.

## Transition Dynamics: Permanent Fall in $z$



- The transition to the new SS is slow.
- A fall in $z$ changes the JC immediately, but $u$ respond slowly.
- $v$ jumps down and $u$ follows the LOM until it reaches the new SS.
- During the transition, the equilibrium points are NOT in the Beveridge curve.

Source: PhD Macrobook.

## Quantitative Evaluation

- How far the model can explain the worker flows across employment and unemployment?
- The flow rate from $U$ to $E$ is procyclical, the model is qualitatively consistent with that.
- The flow rate from $E$ to $U$ is countercyclical, the model cannot account for that.
- To evaluate the quantitative performance, we must choose functional forms. The matching function is Cobb-Douglas:

$$
M(u, v)=\chi u^{\eta} v^{1-\eta}, \quad \text { then } \quad \lambda_{w}(\theta)=\chi \theta^{1-\eta} \quad \text { and } \quad \lambda_{f}(\theta)=\chi \theta^{-\eta}
$$

where $\eta \in(0,1)$.

- Productivity follows an $\operatorname{AR}(1): \ln \left(z_{t+1}\right)=(1-\rho) \ln \left(z_{s s}\right)+\rho \ln \left(z_{t}\right)+\sigma_{\varepsilon} \varepsilon_{t+1}$, where $\varepsilon \sim N(0,1)$.


## Digression: Numerical Solutions

- The model can be solved numerically using standard techniques:
- Log-linearization (i.e., perturbation), value function iteration / projection, shooting algorithm, etc.
- For more intuition, see the log-linearized solution in the PhD macrobook.
- If you are using linearized solutions, you have to be careful about corner solutions (i.e., the number of vacancies hit zero, $v_{t}=0$ ).
- For more information, see Petrosky-Nadeau \& Zhang (QE, 2017): Solving the Diamond-Mortensen-Pissarides Model Accurately.


## Calibration: Shimer (2005)

- Most of parameters are taken from Shimer (AER, 2005). The shock process comes from Hagedorn and Manovskii (AER, 2008).

| Calibrated Parameters | Value |
| :---: | :---: |
| $\beta$ | 0.996 |
| $\rho$ | 0.949 |
| $\sigma_{\varepsilon}$ | 0.0065 |
| $\sigma$ | 0.034 |
| $\chi$ | 0.45 |
| $b$ | 0.4 |
| $\gamma$ | 0.72 |
| $\eta$ | 0.72 |

Source: PhD Macrobook.

## Quantitative Evaluation: The Shimer Puzzle

- The model generates the right correlations, but the magnitude of the fluctuations in $u, v$, and $\theta$ is too small.
- This is known as labor market volatility puzzle (or Shimer puzzle (2005)).
- The left is the data, the right table is model moments:

|  |  | $u$ | $v$ | $v / u$ | $z$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Standard Deviation |  | 0.125 | 0.139 | 0.259 | 0.013 |
| Quarterly Autocorrelation | 0.870 | 0.904 | 0.896 | 0.765 |  |
| Correlation Matrix | $u$ | 1 | -0.919 | -0.977 | -0.732 |
|  | $v$ | - | 1 | 0.982 | 0.460 |
|  | $v / u$ | - | - | 1 | 0.967 |
|  | $z$ | - | - | - | 1 |


|  |  | $u$ | $v$ | $v / u$ | $z$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Standard Deviation |  | 0.005 | 0.016 | 0.020 | 0.013 |
| Quarterly Autocorrelation |  | 0.826 | 0.700 | 0.764 | 0.765 |
|  | $u$ | 1 | -0.839 | -0.904 | -0.804 |
| Correlation Matrix | $v$ | - | 1 | 0.991 | 0.972 |
|  | $v / u$ | - | - | 1 | 0.961 |
|  | $z$ | - | - | - | 1 |

## Solution 1: Wage Rigidity

- One reason why the elasticities of $u$ and $v$ to $z$ are small is because the wages increase too much in booms, so it weakens the response of profit to a shock in $z$.
- An solution to the puzzle is wage rigidity. Instead of Nash Bargaining, assume wage is fixed at $w_{s s}$ :

$$
\begin{gathered}
\frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)}=\beta \mathbb{E}_{t}\left[z_{t+1}-w_{s s}+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)}\right] \\
\hline \hline \text { Standard Deviation } \\
\text { Quarterly Autocorrelation } \\
\end{gathered}
$$

- Another alternative, wages partially rigid (Hall, 2005): $w=\alpha w^{N B}+(1-\alpha) w_{s s}\left(w^{N B}\right.$ is the wage from Nash Bargaining).


## Solution 2: Hagedorn-Manovskii Calibration

- Hagedorn and Manovskii (2008) propose to re-calibrate the outside option $b$ and the bargaining weight $\gamma$.
(i) First, they add elastic vacancy costs.
(ii) Second, they choose very high $b$ so that is very close to $z$, and very low $\gamma$.
- By reducing the surplus (particularly from the workers), an increase in $z$ has huge impact on profits and hence in vacancies.
- But it implies that people are almost indifferent between working and being unemployed. Is it realistic?

Efficiency \& Extensions

## Endogenous Separation

- The flow rate of $E \rightarrow U$ increases in recessions, but in the model is constant. One extension to account for this fact is to include endogenous separation.
- Suppose the firm has to pay a cost for maintaining the match, $c(\sigma)$, where $c^{\prime}(\sigma)<0$.
- Now $\sigma$ is a choice variable, so the Bellman equation of a matched firm is:

$$
J(z)=\max _{\sigma} z-w(z)-c(\sigma)+\beta \mathbb{E}\left[(1-\sigma) J\left(z^{\prime}\right)+\sigma V\left(z^{\prime}\right) \mid z\right]
$$

- The f.o.c is (using the FE condition in the second equality):

$$
-c^{\prime}(\sigma)=\beta \mathbb{E}\left[J\left(z^{\prime}\right) \mid z\right]=\frac{\kappa}{\lambda_{f}(\theta)}
$$

## Endogenous Separation

- The optimal value of $\sigma$ will be a function of $z$, so it will fluctuate when $z$ fluctuates.
- Assume: $c(\sigma)=\phi \sigma^{-\xi}$. The model generates more fluctuation than the constant $\sigma$, but it still very small.

|  |  | $u$ | $v$ | $v / u$ | $z$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Standard Deviation |  | 0.010 | 0.011 | 0.021 | 0.013 |
| Quarterly Autocorrelation |  | 0.862 | 0.623 | 0.764 | 0.765 |
|  | $u$ | 1 | -0.893 | -0.969 | -0.909 |
| Correlation Matrix | $v$ | - | 1 | 0.976 | 0.957 |
|  | $v / u$ | - | - | 1 | 0.961 |
|  | $z$ | - | - | - | 1 |

- One alternative is to include wage rigidity.


## Efficiency

- Because there is search frictions, the decisions of the agents - firms posting vacancies and unemployed workers accepting matches - impact the other firms and workers.
- For instance, a new vacancy increases marginally the probability of a match, but it also decreases the probability of all the other vacancies to fill.
- This is the congestion externality.
- To have a sense when the model is efficient, we must solve the Social Planner's problem.
- The Planner is still subject to the search frictions, hence the solution is constrained efficient.


## Planner's Problem

- The social planner maximizes the total surplus:

$$
\begin{aligned}
\max _{e_{t+1}, v_{t}} & \mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \beta^{t}\left(z_{t} e_{t}-b\left(1-e_{t}\right)-\kappa v_{t}\right)\right] \\
\text { s.t. } & e_{t+1}=(1-\sigma) e_{t}+\lambda_{f}\left(\theta_{t}\right) v_{t}
\end{aligned}
$$

- The Planner explicitly considers the effect of $v_{t}$ and $e_{t}$ on $\theta_{t} \equiv \frac{v_{t}}{1-e_{t}}!!!$
- Let $\mu_{t}$ be the Lagrange multiplier. The Lagragean is:

$$
\mathcal{L}=\mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \beta^{t}\left(e_{t}\left(z_{t}-b\right)-b-\kappa v_{t}\right)+\mu_{t}\left((1-\sigma) e_{t}+\lambda_{f}\left(\frac{v_{t}}{1-e_{t}}\right) v_{t}-e_{t+1}\right)\right]
$$

## Planner's Problem

- The f.o.c. with respect to $e_{t+1}$ :

$$
\mu_{t}=\mathbb{E}_{t}\left[\beta^{t+1}\left(z_{t+1}-b\right)+\mu_{t+1}\left((1-\sigma)+\lambda_{f}^{\prime}\left(\theta_{t+1}\right) \theta_{t+1}^{2}\right)\right]
$$

- The f.o.c with respect to $v_{t}$ :

$$
\beta^{t} \underbrace{\left(\lambda_{f}^{\prime}\left(\theta_{t}\right) \theta_{t}+\lambda_{f}\left(\theta_{f}\right)\right)}_{=\lambda_{f}\left(\theta_{t}\right)\left[1-\eta\left(\theta_{t}\right)\right]}=\mu_{t}
$$

where $\eta\left(\theta_{t}\right) \equiv-\frac{\theta_{t} \lambda_{f}^{\prime}\left(\theta_{t}\right)}{\lambda_{f}\left(\theta_{t}\right)}$ is the elasticity of the vacancy filling probability, i.e., how much the probability of filling a vacancy changes with a change in the tightness.

- The focs include new terms accounting for the externality.
- In the Cobb-Douglas case: $\eta\left(\theta_{t}\right)=\eta$.


## Planner's Problem

- Combining both equations, using $\lambda_{f}^{\prime}(\theta) \theta \equiv-\eta(\theta) \lambda_{f}(\theta)$, and simplifying stuff:

$$
\begin{aligned}
\beta^{t} \frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)\left[1-\eta\left(\theta_{t}\right)\right]} & =\mathbb{E}_{t}\left[\beta^{t+1}\left(z_{t+1}-b\right)+\beta^{t} \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)\left[1-\eta\left(\theta_{t+1}\right)\right]}\left((1-\sigma)+\lambda_{f}^{\prime}\left(\theta_{t+1}\right) \theta_{t+}^{2}\right.\right. \\
\frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)\left[1-\eta\left(\theta_{t}\right)\right]} & =\beta \mathbb{E}_{t}\left[z_{t+1}-b+\frac{\kappa(1-\sigma)}{\lambda_{f}\left(\theta_{t+1}\right)\left[1-\eta\left(\theta_{t+1}\right)\right]}-\kappa \theta_{t+1} \frac{\eta\left(\theta_{t+1}\right)}{1-\eta\left(\theta_{t+1}\right)}\right]
\end{aligned}
$$

- Ok, now what? Let's look at the Job Creation equation derived using the market equilibrium:

$$
\frac{\kappa}{(1-\gamma) \lambda_{f}\left(\theta_{t}\right)}=\beta \mathbb{E}_{t}\left[z_{t+1}-b+\frac{\kappa(1-\sigma)}{(1-\gamma) \lambda_{f}\left(\theta_{t+1}\right)}-\kappa \theta_{t+1} \frac{\gamma}{(1-\gamma)}\right]
$$

## Hosios Condition

- The Planner solution is equal to the market equilibrium whenever: $\eta(\theta)=\gamma$ ! This is called Hosios condition (Hosios, 1990).
- The share of workers (firms) in the surplus of a match is equal to the elasticity of the matching function with respect to the corresponding search input.
- Intuitively, we want to tax the "search" to correct for the negative externality.
- The bargaining weight acts as a distortionary tax here: once you have a match the firm/worker only appropriates part of the surplus.
- Some people call this the appropriability problem
- The Hosios condition mean that the appropriability and congestion exactly balance each other.


## Search \& Matching in the RBC

- Including a Search and Matching framework into a standard neoclassical growth model is relatively straightforward. Early papers include Merz (1995) and Andolfatto (1996).
- Suppose the representative household has employed and unemployed workers. The household utility is usual: $\mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right]$.
- The budget constraint considers the income of the employed and unemployed members:

$$
c_{t}+k_{t+1}=\left(1+r_{t}-\delta\right) k_{t}+\left(1-u_{t}\right) w_{t}+u_{t} b+d_{t}
$$

where $d_{t}$ is the profit of the firm.

- The solution implies the usual Euler Equation. In particular, define the the stochastic discount factor as:

$$
Q_{t+1}=\beta \mathbb{E}_{t}\left[\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right]
$$

## Search \& Matching in the RBC: Firms

- The representative firm produces according to: $y_{t}=z_{t} k_{t}^{\alpha} e_{t}^{1-\alpha}$, where $e_{t}$ is the number of individuals employed.
- The sequential problem of the firm is similar to the one presented before:

$$
\begin{aligned}
\max _{e_{t+1}, v_{t}, k_{t}} & \mathbb{E}_{t}[\sum_{t=0}^{\infty} \prod_{s=1}^{t} Q_{s} \underbrace{\left(z_{t} k_{t}^{\alpha} e_{t}^{1-\alpha}-r_{t} k_{t}-w_{t} e_{t}-\kappa v_{t}\right)}_{=d_{t}}] \\
\text { s.t. } & e_{t+1}=(1-\sigma) e_{t}+\lambda_{f}\left(\theta_{t}\right) v_{t}
\end{aligned}
$$

- Note that $k_{t}$ is a static decision, hence the f.o.c:

$$
\alpha z_{t} k_{t}^{\alpha-1} e_{t}^{1-\alpha}=r_{t} \quad \Rightarrow k_{t}=\left(\frac{\alpha z_{t}}{r_{t}}\right)^{\frac{1}{1-\alpha}} e_{t}
$$

## Search \& Matching in the RBC: Firms

- Using the solution for capital:

$$
\begin{aligned}
d_{t} & =z_{t} k_{t}^{\alpha} e_{t}^{1-\alpha}-r_{t} k_{t}-w_{t} e_{t}-\kappa v_{t} \\
d_{t} & =(1-\alpha) \frac{y_{t}}{e_{t}} e_{t}-w_{t} e_{t}-\kappa v_{t} \\
d_{t} & =\underbrace{(1-\alpha) z_{t}^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r_{t}}\right)^{\frac{\alpha}{1-\alpha}}}_{=m p n\left(z_{t}, r_{t}\right)} e_{t}-w_{t} e_{t}-\kappa v_{t}
\end{aligned}
$$

- Thus, the problem is almost the same as we had before:

$$
\begin{aligned}
\max _{e_{t+1}, v_{t}} & \mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \prod_{s=1}^{t} Q_{s}\left(\operatorname{mpn}\left(z_{t}, r_{t}\right) e_{t}-w_{t} e_{t}-\kappa v_{t}\right)\right] \\
\text { s.t. } & e_{t+1}=(1-\sigma) e_{t}+\lambda_{f}\left(\theta_{t}\right) v_{t}
\end{aligned}
$$

## Search \& Matching in the RBC: Job Creation

- The first order conditions imply the usual job creation equation that depends on the stochastic discount factor and the interest rate:

$$
\frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)}=\mathbb{E}_{t}\left[Q_{t+1}\left(\operatorname{mpn}\left(z_{t+1}, r_{t+1}\right)-w_{t+1}+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)}\right)\right]
$$

- Since the unemployment law of motion is the same, it remains to show the wage determination to derive the rest of the model.
- We will show that the marginal value of employment in the model with capital has a close connection with the worker equations seen before.


## Search \& Matching in the RBC: Employment Value

- We could derive the marginal value of employment in the sequential problem of the household:

$$
\begin{gathered}
\mathcal{L}=\mathbb{E}_{t}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(e_{t} w_{t}+\left(1-e_{t}\right) b+d_{t}+\left(1+r_{t}-\delta\right) k_{t}-k_{t+1}\right)+\ldots\right. \\
\left.\ldots \mu_{t}^{e}\left(e_{t}(1-\sigma)+\left(1-e_{t-1}\right) \lambda_{w}\left(\theta_{t-1}\right)-e_{t}\right)\right]
\end{gathered}
$$

where $\mu_{t}^{e}$ is the multiplier of the employment law of motion.

- The f.o.c. w.r.t to $e_{t}$ :

$$
\mu_{t}^{e}=\left(w_{t}-b\right) \beta^{t} u^{\prime}\left(c_{t}\right)+\mathbb{E}_{t}\left[\mu_{t+1}^{e}\left(1-\sigma-\lambda_{w}\left(\theta_{t}\right)\right)\right]
$$

## Search \& Matching in the RBC: Employment Value

- Re-define the multiplier: $\mu_{t}^{e}=\hat{\mu}_{t}^{e} \beta^{t} u^{\prime}\left(c_{t}\right)$. Then, the previous equation:

$$
\hat{\mu}_{t}^{e}=w_{t}-b+\mathbb{E}_{t}[\underbrace{\frac{\beta u^{\prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t+1}\right)}}_{Q_{t+1}}\left[\hat{\mu}_{t+1}^{e}\left(1-\sigma-\lambda_{w}\left(\theta_{t}\right)\right)\right]]
$$

- Reminds you something? Recal $W_{t}-U_{t}$ in the case without capital:

$$
W_{t}-U_{t}=w_{t}-b+\beta \mathbb{E}_{t}\left[\left(W_{t+1}-U_{t+1}\right)\left(1-\sigma-\lambda_{w}\left(\theta_{t}\right)\right)\right]
$$

- The maginal value of employment $\hat{\mu}_{t}^{e} \equiv W_{t}-U_{t}$ if we weight for the fact that utility is concave and there are savings.


## Search \& Matching in the RBC: Wage Equation

- Using the marginal value of employment and the marginal value of a job filled (this is also a multiplier in the firm problem) in the Nash Bargaining, we find the wage equation:

$$
w_{t}=b+\gamma\left(\operatorname{mpn}\left(z_{t}, r_{t}\right)-b\right)+\gamma \kappa \theta_{t}
$$

which is exactly the same as before - except that the marginal product of labor depends on $r$ as well.

- Together with the Job Creation Condition and employment law of motion, we have the search and matching block of the model:

$$
\frac{\kappa}{\lambda_{f}\left(\theta_{t}\right)}=\mathbb{E}_{t}\left[Q_{t+1}\left(\operatorname{mpn}\left(z_{t+1}, r_{t+1}\right)-w_{t+1}+(1-\sigma) \frac{\kappa}{\lambda_{f}\left(\theta_{t+1}\right)}\right)\right]
$$

## Search \& Matching in the RBC: Equilibrium

- The rest of the model are the usual equations from the RBC/Neoclassical growth model:

$$
\begin{aligned}
& \left.u^{\prime}\left(c_{t}\right)=\beta \mathbb{E}_{t}\left[\left(1+r_{t+1}-\delta\right) u^{\prime}\left(c_{t+1}\right)\right]\right) \\
& z_{t} k_{t}^{\alpha} e_{t}^{1-\alpha}=c_{t}+k_{t+1}-(1-\delta) k_{t}+\kappa v_{t} \\
& r_{t}=\alpha z_{t}\left(e_{t} / k_{t}\right)^{1-\alpha} \\
& \ln \left(z_{t+1}\right)=(1-\rho) \ln \left(z_{s s}\right)+\rho \ln \left(z_{t}\right)+\sigma_{\varepsilon} \varepsilon_{t+1}
\end{aligned}
$$

- Note we must consider the vacancy cost in the resource constraint.


## Quantitative Evaluation

|  |  | $u$ | $v$ | $v / u$ | $z$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Standard Deviation |  | 0.005 | 0.017 | 0.022 | 0.015 |
| Quarterly Autocorrelation |  | 0.819 | 0.688 | 0.755 | 0.763 |
|  | $u$ | 1 | -0.831 | -0.899 | 0.089 |
| Correlation Matrix | $v$ | - | 1 | 0.991 | -0.071 |
|  | $v / u$ | - | - | 1 | -0.078 |
|  | $z$ | - | - | - | 1 |
|  | $Y$ | $C$ | $I$ | $L$ | $Y / L$ |
| Standard Deviation | 0.014 | 0.003 | 0.059 | 0.0004 | 0.014 |
| Correlation with $Y$ | 1 | 0.875 | 0.991 | 0.902 | 0.99992 |

Source: PhD Macrobook.

- As in the baseline model, unemployment volatility is very low. Wage rigidity fixes this.

