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Introduction

• One of the earliest questions in macroeconomics:

▶ Why do economic cycles exist?

▶ How do they work (what are the propagation mechanisms)?

▶ Can we do anything about it?

• We will think about this from the perspective of the Real Business Cycles (RBC) Model.
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Introduction

• 1950s-1970s:
▶ Keynesian models estimated via simultaneous equations with aggregate data were the

alternative for studying economic cycles.
▶ Neoclassical models were used for long-term growth.

• Early 1970s:
▶ Keynesian models failed to deal with supply shocks.
▶ Methodologically did not survive Lucas’s Critique and the rational expectations revolution.

• Lucas Critique requires internal consistency (i.e., general equilibrium).
▶ In models with stochastic shocks, rational expectations ensure internal consistency.
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Introduction

• By ensuring internal consistency and at the same time having relative quantitative success,
Kydland and Prescott’s (1982) RBC became the great successor of the Rational
Expectations Revolution.

▶ De Vroey (2015): Kydland and Prescott were to Lucas what Hicks and Modigliani were to
Keynes.

▶ The RBC was responsible for the birth of DSGE (Dynamic Stochastic General Equilibrium)
models.

• The model explains business cycle fluctuations using the Solow Residual.

• The basic model is efficient: zero room for fiscal/monetary policies.
▶ Cycles are merely endogenous responses of agents to technological shocks.
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Initial Success of RBC

• How did a model of cycles without room for policy have such initial success?

• It was extremely difficult to achieve quantitative success in replicating business cycles
with an internally consistent model.

• Until then, theoretical attempts focused on monetary shocks and had not had empirical
success.

▶ Lucas made attempts with models of unanticipated monetary shocks.
▶ Initially, Kydland and Prescott’s idea was to use monetary shocks with second-order

productivity.

• After numerous refinements, monetary shocks were discarded and only with technological
shocks did they replicate economic cycles (or 70% of them).

• They merged long-term growth and economic cycles into one framework.

• Emphasized quantitative evaluation based on model calibration and numerical solution.
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Initial success of RBC

“As state by Plosser, that such a simple model “with no government, no money, no market
failures of any kind, rational expectations, no adjustment costs and identical agents could
replicate actual experiences this well is most surprising”. What made the Kydland and Prescott
model stunning was that, while resting on just one shock and six parameters it delivered as
much as models containing dozens of equations and many more free parameters.”
- De Vroey (2015, p. 266)
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What We Learn in This Chapter

• How to solve the standard RBC model.

• The trade-off between work and leisure.

• How to log-linearize and approximate the model solution around the steady state.
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Stylized Facts of Business Cycles
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Business Cycle Facts

• Initial Facts: Burns and Mitchell (1947). Highly criticized for lack of statistical rigor.

• Hodrick and Prescott (1980) and Kydland and Prescott (1982) established more rigorously
the facts about business cycles in the US economy.

• The first challenge is to separate the economic cycle from the long-term trend.

• The most common method is to filter the data using the HP filter (Hodrick and Prescott).
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HP Filter

• Let yt be a time series (in logs). We want to decompose the series into a trend, ygt , and a
cyclical component (residue), yct , yt = ygt + yct :

min
{ygt }Tt=1

T−1∑
t=2

{
(yt − ygt )

2 + λ[(ygt+1 − ygt )− (ygt − ygt−1)]
2
}
+ (yT − ygT )

2 + (y1 − yg1)
2

• The higher λ is, the more weight is given to variations in the growth rate of the trend
component.

• If λ = 0, ygt equals yt. If λ = ∞, ygt is a linear trend.

• Hodrick and Prescott’s rule is to choose λ = 1600 for quarterly series and λ = 400 for
annual ones.

• Many criticisms and alternatives to the HP filter. See Stock and Watson (1999, Handbook
of Macroeconomics).
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HP Filter

Source: King and Rebelo (1999).

• HP filter extracts much more low-frequency information than a simple linear trend.
• Eliminates series components with periodicities greater than about 8 years.
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Business Cycle Facts

Volatility (standard deviation in %)

1. Consumption is less volatile than output. Durable goods consumption is more volatile.

2. Investment is three times more volatile than output.

3. Government spending is less volatile than output.

4. Hours worked are equally volatile as output.
▶ Mostly due to employment (extensive margin) rather than hours per worker (intensive

margin).

5. Labor productivity is less volatile than output.
▶ Evidence that real wages do not adjust instantaneously (sticky wages).
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Business Cycle Facts

Comovement: (correlation between two series)

1. Most variables are procyclical, i.e., exhibit positive contemporaneous correlation with
output.

2. Real wages, government spending, and capital stock are basically acyclical.

Persistence: (autocorrelation)

1. Most variables are highly persistent: ρ = 0.8 ∼ 0.9.
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Business Cycle Facts

Source: King and Rebelo (1999). 15 / 71



Business Cycle Facts

Source: Aguiar and Gopinath (2007).
16 / 71



Business Cycle Facts

Source: Kanczuk (2004).
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Standard RBC Model
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Standard RBC Model

• The most basic version of the RBC model is a neoclassical growth model with stochastic
technological shocks and elastic labor supply (leisure decision).

• Environment:
▶ Discrete time, representative household living infinitely many periods.
▶ Household owns capital (alternatively, the firm can own capital).
▶ No population or technological growth (i.e., no long-term trend growth). Including it doesn’t

make much difference.
▶ Competitive markets.
▶ No government.
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Preferences

• The representative household values consumption, Ct, and leisure, Lt, and has expected
utility:

E0

∞∑
t=0

βtu(Ct, Lt),

where β ∈ (0, 1), and u is increasing, concave, twice differentiable in both arguments, and
satisfies Inada conditions.

• Temporal endowment: one unit of time that can be divided into labor, Nt, and leisure, Lt:

Lt +Nt = 1 ∀t

• Budget constraint (standard):

Ct +Kt+1 ≤ (1 + rt − δ)Kt + wtNt +Πt ∀t

along with a no-Ponzi condition and K0 > 0.
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Technology

• Production function: Yt = ZtF (Kt, AtNt).

• Usual assumptions: constant returns to scale (Πt = 0) and Inada conditions.

• Technological shocks:
▶ At (Labor-augmenting Technological Change) ⇒ Deterministic trend of long-term growth.

Assume for simplicity that At = 1.
▶ Zt ⇒ Stochastic productivity shocks around the trend.

• From the firm’s problem, we derive the input demand equation (which implies that the
price of capital and labor equals their marginal product)

rt = ZtFK(Kt, Nt)

wt = ZtFN (Kt, Nt)
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Shock

• The stochastic process of technological shock follows an AR(1) process:

log(Zt) = ρ log(Zt−1) + σεt

• Where:
▶ −1 < ρ < 1 represents the persistence of the AR(1);
▶ σ > 0 captures the variance;
▶ The stochastic innovation εt is an iid process with mean 0 and standard deviation 1;

• The unconditional mean of the process is E[log(Zt)] = 0 (could be different than zero).

• Suppose log(Z0) equals the unconditional mean.

22 / 71



Equilibrium Conditions

• Equilibrium requires that at every t:

▶ Goods market is in equilibrium:

Yt = ZtF (Kt, Nt) = Ct + It ∀t

where It is given by the capital law of motion: Kt+1 = It + (1− δ)Kt.

▶ Prices, (rt, wt), are those that equate supply (household) and demand (firms) in the capital
and labor markets:

Ks
t = Kd

t ∀t
Ns

t = 1− L∗
t = Nd

t ∀t
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Household’s Problem

• Substituting 1−Nt = Lt:

L = E0

∞∑
t=0

βtu(Ct, 1−Nt) + λt((1 + rt − δ)Kt + wtNt − Ct −Kt+1)

• f.o.c.:
▶ βtuC(Ct, Lt) = λt ∀t;
▶ βtuL(Ct, Lt) = λtwt ∀t;
▶ λt = Et(1 + rt+1 − δ)λt+1 ∀t.

• Implies the following conditions (at every t):

uC(Ct, Lt) = βEt [(1 + rt+1 − δ)uC(Ct+1, Lt+1)] (EE)
uL(Ct, Lt) = uC(Ct, Lt)wt (LS)

• The traditional Euler Equation plus an intratemporal equation determining labor supply
(Labor Supply Equation).
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Decentralized Equilibrium

• Decentralized equilibrium is given by the system of equations for every t:

uC(Ct, Lt) = βEt [(1 + rt+1 − δ)uC(Ct+1, Lt+1)]

uL(Ct, Lt) = uC(Ct, Lt)wt

Lt +Nt = 1

rt = ZtFK(Kt, Nt)

wt = ZtFN (Kt, Nt)

Yt = It + Ct

Kt+1 = It + (1− δ)Kt

Yt = ZtF (Kt, Nt)

log(Zt) = ρ log(Zt−1) + σεt

along with the TVC and K0 given.
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Decentralized Equilibrium

• Difference with respect to the deterministic neoclassical growth model:
▶ Labor-leisure decision: Labor supply equation + time constraint.
▶ Stochastic process of productivity.

• Depending on the functional forms, the system can be reduced to 3 equations + TVC and
K0.

▶ Euler Eq. + resource constraint + stochastic process of Zt.

• First + Second Welfare Theorems hold and the decentralized solution equals the
central planner’s solution.

▶ Not true if we include externalities, distortionary taxation, etc.
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Functional Forms

• Cobb-Douglas production function: F (K,N) = KαN1−α with α ∈ (0, 1).

• Utility:
▶ If the model has positive exogenous growth (i.e., At+1/At > 1), the utility ensuring constant

hours worked on the Balanced-Growth Path (King–Plosser–Rebelo preferences) is:

u(C,L) =

®
(Cv(L))1−σ−1

1−σ , σ > 0, σ ̸= 1

log(C) + log(v(L)), σ = 1.

▶ We will use:

u(C,L) = log(C) + θ
L1−ϕ − 1

1− ϕ

where ϕ governs the elasticity of labor supply.
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Utilities

• In practice, many articles use utilities that are not consistent with BGP. For example:

u(C,L) =
C1−σ − 1

1− σ
− θ

N1+η − 1

1 + η

• or the well-known Greenwood–Hercowitz–Huffman preferences:

u(C,L) =
(C + v(L))1−σ − 1

1− σ

• This latter one is widely used when we want to eliminate the income effect on labor supply.
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Functional Forms

• Applying the functional forms and reducing the system:

1

Ct
= βEt

ï
(1 + Zt+1α(Kt+1/Nt+1)

α−1 − δ)
1

Ct+1

ò
(1)

θ(1−Nt)
−ϕ =

Zt(1− α)(Kt/Nt)
α

Ct
(2)

ZtK
α
t N

1−α
t = Kt+1 − (1− δ)Kt + Ct (3)

log(Zt+1) = ρ log(Zt) + σεt+1 (4)

• Given a sequence of shocks {εt}∞t=0, this system (+TVC, K0 and Z0) characterizes the
optimal allocations.
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Steady State

• Define the steady state in the unconditional mean non-stochastic (σ = 0): Z∗ = 1,
Kt+1 = Kt = K∗, Ct+1 = Ct = C∗, and Nt = N∗.

• We can solve the system:
▶ Use (1) and write the capital-labor ratio K/N in terms of the parameters.
▶ Use (3), K/N , and find C/N in terms of the parameters.
▶ Use (2), K/N , C/N , and find N in terms of the parameters (note that there exists a 1-1

map between N∗ and θ).

• Given the chosen functional forms, the system doesn’t have an analytical solution.
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Labor-Leisure Decision

• Before assessing the impact of technological shocks, it’s important to understand the
impact of an elastic labor supply.

• How do agents respond to a wage increase?

θ(1−Nt)
−ϕ =

wt

Ct
= wtλt

• Suppose for a moment that Ct is constant. An increase in wt increases Nt: this is the
substitution effect.

• A wage increase also makes families wealthier: they want to consume more goods and
more leisure (less work): income effect.

• For realistic calibrations, the substitution effect dominates the income effect.
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Digression: Frisch Elasticity

• The elasticity of labor supply with respect to the wage while keeping the marginal utility of
wealth constant (λ) is known as the Frisch Elasticity.

• Taking the log in the intratemporal decision (and using the fact that Ct is constant):

log(1−Nt) = − 1

ϕ
logwt +

1

ϕ
logCt +

1

ϕ
log θ

d log(1−Nt) = − 1

ϕ
d logwt

• Using d log(1−Nt) = − Nt
1−Nt

d logNt:

d logNt

d logwt
=

1

ϕ

Å
1−Nt

Nt

ã
• ϕ governs the labor force response to a wage increase (considering the income effect

constant).
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Intertemporal Labor Substitution

• To understand the labor force response to a change in wages, we can think of the HH
choosing three variables:

▶ Consumption today, consumption tomorrow (savings), and leisure (negative work).

• Using the Euler Equation and substituting the labor supply equation (ignore uncertainty):Å
1−Nt+1

1−Nt

ãϕ

= β(1 + rt+1 − δ)

Å
wt

wt+1

ã
▶ If the wage is higher today than tomorrow, agents prefer to work more today than tomorrow.
▶ If the interest rate is higher, agents prefer to work today (to save more) and relax tomorrow.

• This is the Intertemporal Labor Substitution and is crucial to understanding
fluctuations (or lack thereof) in the RBC.
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Technological Shocks

• What happens when there’s a positive technological shock (↑ Zt)?

• Capital is predetermined and doesn’t respond immediately. Labor and consumption jump
to the new optimal trajectory (recall they are jump variables).

▶ ↑ wt =MPNt = (1− α)Zt(Kt/Nt)
α

▶ ↑ rt =MPKt = αZt(Kt/Nt)
α−1

• Important: how persistent is Zt? Let’s consider the two extreme cases:
▶ Transitory shock: ρ = 0, and Z returns to its steady-state value in t+ 1.
▶ Permanent shock: ρ = 1, and Z permanently alters its value in the steady state.

• Realistically, the shock will be between these two extremes.
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Transitory Technological Shock

• Suppose a completely transitory positive shock (ρ = 0).

• High intertemporal substitution of labor: the agent will work a lot today since tomorrow
Zt returns “to normal”.

• The increase in labor amplifies production at t.

• However, the effect on the agent’s permanent income is very small: the productivity shock
lasts only one period! This makes:

▶ The income effect on consumption is low: consumption increases but very little.
▶ The income effect on leisure is also low: substitution effect on work clearly dominates the

income effect.
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Transitory Technological Shock

• Since the shock is transitory, production returns almost to the steady-state value in t+ 1,
t+ 2,..., etc.

• The income difference between the present (t) and the future (t+ 1, ...) causes investment
to be very high in t but disappears in t+ 1.

• In the transitory shock:
▶ some amplification in production via labor supply...
▶ ...but very little persistence!

• The model is unable to generate internal propagation.
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Transitory Technological Shock

Source: King and Rebelo (2002).
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Permanent Technological Shock

• Suppose a completely permanent positive shock (ρ = 1).

• The intuition comes from the Ramsey-Cass-Koopman model:
▶ New steady state with a higher capital-labor ratio.
▶ Remember that in the (normalized) steady state, the quantity of hours and interest rate will

always be the same (given the preferences we chose).

• Effect on consumption at t:
▶ The household’s permanent income is much higher than in the transitory case: income effect

increases consumption at t (and in all periods).
▶ Capital is still very low at t: there are incentives to reduce consumption and invest more at t.

• For reasonable parameters, the first effect dominates and consumption jumps upwards on
the shock impact.

▶ With capital accumulation, the second effect diminishes over time and consumption keeps
increasing: Ct+1/Ct = Rt+1β
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Permanent Technological Shock

• Amplification of labor is much smaller than in the transitory case.
▶ As in the transitory case, an increase in Z ⇒ increases the demand for labor.
▶ Unlike the transitory case, the income effect is much higher! Increases consumption and

decreases labor supply!

θ(1−Nt)
−ϕ =

↑ wt

↑ Ct

• Generally, the substitution effect dominates at t, but the dynamics are much more complex
since both Ct and wt increase in the future due to capital accumulation.

• In the permanent shock, the model has even less amplification:
▶ The effect of permanent income silences the labor response.
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Permanent Technological Shock

Source: King and Rebelo (2002).
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Quantitative Performance

• A suggestion by Kydland and Prescott (1982) was to assess the usefulness of the theory by
judging whether the data simulated by the model can replicate the data from the economy.

• In RBC, the focus is on the second moments (standard deviation, correlation, and
autocorrelation) of the (filtered) variables of interest.

• To simulate the model, we need to:
▶ Choose functional forms and the model period (annual, quarterly, etc.).
▶ Choose parameters consistent with long-term facts and/or microeconomic studies.
▶ Find the policy functions of the model.
▶ Simulate a sequence of random variables (εt) and compute the endogenous variables

(yt, ct, kt+1, ...) using the policy functions.
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Calibration

• We already have the functional forms. The model period will be quarterly (same as the
data).

• A portion of the parameters are chosen to be consistent with the Kaldor Facts:

▶ 1− α⇒ fraction of labor income in national income (usually 2/3).
▶ β = 1

(1+r̄−δ) ⇒ annual interest rate 6.5% (quarterly 0.065/4). The formula needs
adjustment if the model has population/technological growth.

▶ δ ⇒ 10% per year (or 2.5% quarterly).
▶ n, g ⇒ if the model has exogenous population and technological growth.
▶ Intertemporal elasticity of substitution / risk aversion = 1 ⇒ log utility. Consistent with

micro estimates (between 1 and 3).
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Calibration

• Conditional on the parameters and ϕ, there exists a one-to-one mapping between L̄ and θ.

θ(1− N̄)−ϕ =
w

C̄
=

(1− α)Ȳ

N̄ C̄
⇔ N̄(1− N̄)−ϕ = θ

(1− α)Ȳ

C̄︸ ︷︷ ︸
parameters

• Typical calibrations assume the agent works from 20% to 33% of the available time:
N̄ = 1/3 ⇒ choose θ consistent with this value.

• Frisch Elasticity: if ϕ = 1 (log), N̄ = 1/3 implies a Frisch elasticity of 2. Inconsistent
value with micro studies!

▶ Microeconomic estimates vary between 0 and 0.5.
▶ Problem: Lower elasticity implies even weaker amplification of the RBC.
▶ How to interpret this difference? Intensive/extensive margin? Unemployment?
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Calibration

• Technological shock parameters: ρ and σ.

• Estimate the Solow Residual (SR) from the production function:
log Yt = logSRt + α logKt + (1− α) logLt.

• Detrend (SR) from the long-term trend and recover only the short-term fluctuations Zt

(using HP-filter or a linear trend).

• Estimate an AR(1):
logZt = ρZt−1 + σεt (5)

• Shock is quite persistent: ρ = 0.979 and σ = 0.0072.
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Quantitative Performance

• Strengths: (i) The shock generates good output fluctuation; (ii) Consumption is less
volatile than output; (iii) Investment is more volatile than output; (iv) Variables have good
autocorrelation; (v) Most variables are procyclical;

• Weaknesses: (i) Little volatility in labor; (ii) Does not generate volatility in the interest
rate; (iii) Wages and interest rates are too procyclical; (iv) Basically all autocorrelation
comes from the shock.
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Log-linearization
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Local Methods

• The solution to the RBC model consists of a system of nonlinear difference equations ⇒
no closed-form analytical solution!

• One way to solve the problem is to use Dynamic Programming.

• Another way is to use local methods:
▶ (Log)-Linearize the equations of the problem (Euler Equations, feasibility, etc.) around a

point, usually at the deterministic steady state.

▶ Write the problem in a system of linear difference equations.

▶ Check the stability of the system and solve for the (linear) policy functions.
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Local Methods

• Linearization is part of a general class of local solutions called Perturbation Methods.

• In practice, linearization (as well as its distant cousin, the Linear Quadratic
Approximation) are equivalent to first-order Perturbation.

• Most packages that solve DSGE models on the computer- Matlab (Dynare), Python
(PyMacLab), Julia (SolveDSGE.jl), etc - use Perturbation.

• For more details on Perturbation, see Fernández-Villaverde, Rubio-Ramírez, & Schorfheide
(2016, Handbook of Macro) and Schmitt-Grohé & Uribe (2004, JEDC).
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Local Methods

• Dynamic Programming
▶ Global Method (solution is a nonlinear policy function).
▶ Slow (curse of dimensionality!).
▶ Captures nonlinearities, asymmetries, etc.
▶ Can be applied to non-convexities, discrete choice.

• Perturbation Methods.
▶ Local Method (what happens when the shock is very large? Covid?)
▶ Fast.
▶ Requires problem to be differentiable (possible, but complicated to deal with kinks).
▶ Presents Certainty Equivalence (at first order). To capture uncertainty, risk, asymmetry, etc.,

higher-order approximations are needed.
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Solving by (log)-Linearization

Road Map
(i) Find the equations determining the equilibrium (Euler Equations, resource constraint, etc.)

[Done]

(ii) Compute the deterministic steady state. [Done]

(iii) Linearize the necessary conditions in the neighborhood of the SS and write in a system of
linear difference equations like (or similar to):

B

ï
kt+1

Etct+1

ò
= A

ï
kt
ct

ò
+ Czt

(iv) Find the solution of the system using the method of undetermined coefficients (Uhlig
(1998)) or methods for solving linear models with rational expectations (Blanchard &
Kahn (1980), Sims (2002), and others).

(v) Use the (linear) decision rules to simulate the model, find impulse-response functions, etc.
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(log)-Linearization

• Loglinearize or linearize?

• Suppose an aggregate variable Xt, where X̄ is its value in steady state.

x̃t = log

Å
Xt

X̄

ã
= log(Xt)− log

(
X̄
)︸ ︷︷ ︸

% deviations from steady state

≈ Xt − X̄

X̄

• Note that we can rewrite Xt = X̄ex̃t and ex̃t ≈ 1 + x̃t.

• Our goal is to write the model variables in % deviations from steady state.
▶ Linearizing the model (without the log) would make interpretation difficult. Deviations would

be in absolute level from SS instead of %.
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General Loglinearization Rule

• With a multiplicative/exponential function, just apply the log directly. For example,
production function Yt = ZtK

α
t N

1−α
t :

log(Yt)− log
(
Ȳ
)︸ ︷︷ ︸

ỹt

= log(Zt)− log
(
Z̄
)︸ ︷︷ ︸

z̃t

+α (log(Kt)− log
(
K̄
)
)︸ ︷︷ ︸

k̃t

+(1−α) (log(Nt)− log
(
N̄
)
)︸ ︷︷ ︸

ñt

• With more complex functions, a general rule is needed.

• Remember the first-order Taylor expansion around a point (X̄, Ȳ ):

f(X,Y ) = f(X̄, Ȳ ) + fx(X̄, Ȳ )(X − X̄) + fy(X̄, Ȳ )(Y − Ȳ )

52 / 71



General Loglinearization Rule

• Suppose you want to loglinearize the function Zt = f(Xt, Yt) around the steady state
Z̄ = f(X̄, Ȳ ):

Zt = f(X̄, Ȳ )︸ ︷︷ ︸
Z̄

+fx(X̄, Ȳ )(Xt − X̄) + fy(X̄, Ȳ )(Yt − Ȳ )Å
Zt − Z̄

Z̄

ã
= fx(X̄, Ȳ )

X̄

Z̄

Å
Xt − X̄

X̄

ã
+ fy(X̄, Ȳ )

Ȳ

Z̄

Å
Yt − Ȳ

Ȳ

ã
z̃t = X̄

fx(X̄, Ȳ )

f(X̄, Ȳ )
x̃t + Ȳ

fy(X̄, Ȳ )

f(X̄, Ȳ )
ỹt

• Since X̄, Ȳ , f(X̄, Ȳ ) are parameter functions, z̃t is a linear function of x̃t and ỹt.
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General Loglinearization Rule

• Production function Yt = f(Zt,Kt, Nt) = ZtK
α
t N

1−α
t in the general case:

ỹt = Z
fz(Z̄, K̄, N̄)

f(Z̄, K̄, N̄)
z̃t +K

fk(Z̄, K̄, N̄)

f(Z̄, K̄, N̄)
k̃t +N

fn(Z̄, K̄, N̄)

f(Z̄, K̄, N̄)
ñt

• Parameters:

Z
fz(Z̄, K̄, N̄)

f(Z̄, K̄, N̄)
= Z̄

K̄αN̄1−α

Z̄K̄αN̄1−α
= 1

K
fk(Z̄, K̄, N̄)

f(Z̄, K̄, N̄)
= K̄

αZ̄K̄α−1N̄1−α

Z̄K̄αN̄1−α
= α

N
fn(Z̄, K̄, N̄)

f(Z̄, K̄, N̄)
= N̄

(1− α)Z̄K̄αN̄−α

Z̄K̄αN̄1−α
= 1− α
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Linearized Euler Equation

• Euler Equation: Et[C
−γ
t+1Rt+1β] = C−γ

t

▶ where Rt+1 ≡ 1 + rt+1 − δ and 1/γ is the intertemporal substitution elasticity.
▶ note that Â�(1 + rt+1 − δ) = log(Rt+1)− log

(
R̄
)
≈ rt+1 − r̄ = r̃t+1.

• Rearranging and using the fact: Ct = C̄ec̃t :

Et

ñ
Cγ
t+1

Cγ
t

ô
= Et[Rt+1β]

Et

ñ
C̄γeγc̃t+1

C̄γeγc̃t

ô
= Et[R̄e

r̃t+1β]

• Using R̄β = 1, eγ(c̃t+1−c̃t) ≈ 1 + γ(c̃t+1 − c̃t) and er̃t+1 ≈ 1 + r̃t+1:

Et [1 + γ(c̃t+1 − c̃t)] = Et[1 + r̃t+1]

Et[c̃t+1]− c̃t =
1

γ
Et[r̃t+1]
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Log-linearized Euler Equation

• Risk aversion depends on the concavity of the utility function (second derivative of u).

• Remember that Et[f(xt+1)] = f(Et[xt+1]) only if f is linear (Jensen’s inequality).

• By linearizing the equation, we are assuming certainty equivalence, meaning that an
increase in uncertainty about Et[ct+1] has no effect on the model’s equilibrium.

• Only the first moment (mean) of the shock distribution matters. Which parameter
represents the shock variance?

logZt+1 = ρ logZt + σεt+1
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Log-linearization

• After log-linearizing all equations, we have a system of the type:

(Production Function) ỹt = ψ1z̃t + ψ2k̃t + ψ3ñt (6)

(Mkt. Clearing) k̃t+1 = ψ4k̃t + ψ5ỹt + ψ6c̃t (7)

(Demand for K) r̃t = ψ7z̃t + ψ8k̃t + ψ9ñt (8)

(Demand for N) w̃t = ψ10z̃t + ψ11k̃t + ψ12ñt (9)
(Supply of N) w̃t = ψ13ñt + ψ14c̃t (10)

(Euler Equation) Et[c̃t+1] = ψ15c̃t + ψ16Et[r̃t+1] (11)
(Shock) z̃t+1 = ρz̃t + σεt+1 (12)

where the ψ’s are functions of parameters and variables in steady state.
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Log-linearization

• From the equations, we can reduce the system to:

k̃t+1 = λ1k̃t + λ2z̃t + λ3c̃t (13)

Et[c̃t+1] = λ4Etz̃t+1 + λ5Etk̃t+1 + λ6c̃t (14)
z̃t+1 = ρz̃t + σεt+1 (15)

where the λ’s are functions of the ψ’s.

• This step is not strictly necessary, and we can include intratemporal variables (r̃t, w̃t, etc).

• From now on, we can solve the system in two ways:
▶ Method of undetermined coefficients (Uhlig (1998), Campbell (1994)). Depending on the

model, it is possible to solve it by pen and paper.
▶ Use a rational expectations linear model solver (Blanchard & Kahn (1980), Klein (1999),

Sims (2002), Rendahl (2017)).
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Undetermined Coefficients

• The idea is to guess that the policy functions are linear functions of the states (k̃t, z̃t):

k̃t+1 = ηkkk̃t + ηkz z̃t (16)

c̃t = ηckk̃t + ηcz z̃t (17)

• Using (17) into (13):

k̃t+1 = (λ1 + λ3ηck)k̃t + (λ2 + λ3ηcz)z̃t

• that is, the undetermined coefficients need to satisfy the equations:

λ1 + λ3ηck = ηkk (18)
λ2 + λ3ηcz = ηkz (19)

59 / 71



Undetermined Coefficients

• Iterating (17) one period forward, and using (15) and (16):

Etc̃t+1 = ηckηkkk̃t + (ηckηkz + ηczρ)z̃t

• Using (17), (16) and (15) in (14):

Etc̃t+1 = (λ5ηkk + λ6ηck)k̃t + (ρλ4 + λ5ηkz + λ6ηcz)z̃t

• that is, the undetermined coefficients need to satisfy the equations:

ηckηkk = λ5ηkk + λ6ηck (20)
ηckηkz + ηczρ = ρλ4 + λ5ηkz + λ6ηcz (21)

• Finally, we have a system of 4 equations, (18), (19), (20), (21), and 4 unknowns
(ηkk, ηkz, ηck, ηcz).
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Undetermined Coefficients

• The system of 4 equations will yield a quadratic equation in ηkk.

• Two possible solutions for ηkk:
▶ We are interested in the stable solution ηkk < 1.
▶ The solution ηkk > 1 is explosive (k̃t+1 tends to infinity).

• The existence of a unique stable solution depends on the parameter values of the model.
▶ If both solutions ηkk < 1 ⇒ multiple solutions.
▶ If both solutions ηkk ≥ 1 ⇒ no solution.
▶ The RBC model is quite robust to parameters, other models require more care.

• Choosing the unique solution, we recover the policy function parameters (and the policy
function for other variables) and can simulate impulse-response functions.
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Undetermined Coefficients

• The method of undetermined coefficients can be generalized (in matrix form).

• Again the system will collapse to a quadratic (matrix) equation and the system will be
stable if the number of generalized eigenvalues inside the unit circle (|λ| ≤ 1) equals the
number of predetermined states (endogenous).

• Other methods can be used to solve the system: Blanchard-Kahn (1980), Sims (2002),
Klein (2000), Rendahl (2017).

• They all involve tedious manipulations of the system in matrix form.

• For more information: McCandless (2008), Canova (2007), Fernandez-Villaverde’s notes.

62 / 71



Blanchard-Kahn Conditions

• Stability conditions can be checked directly in the linear difference equations.

• Suppose x is a (n× 1) vector of predetermined variables (k̃t in RBC), y is a (m× 1)
vector of non-predetermined variables (jump variables, c̃t in RBC), and z a (k × 1) vector
of exogenous states (z̃t in RBC).ï

xt+1

Etyt+1

ò
= F

ï
xt
yt

ò
+Gzt

where F is a (n+m)× (n+m) matrix and G a (n+m)× k matrix.

• (Proposition) Blanchard-Kahn Conditions (1980): let h be the number of eigenvalues
of F outside the unit circle (|λ| > 1).

▶ If h = m, the system has a unique stable solution.
▶ If h > m, the system has no solution.
▶ If h < m, the system is indeterminate (infinitely many solutions).
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Extensions
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Critiques and Extensions

Over the years, the basic RBC model has undergone numerous criticisms and refinements:

• Too much co-movement of the interest rate with output (include adjustment cost in
capital).

• Insufficient amplification (add variable capacity utilization).

• Not consistent with asset pricing - equity risk premium (include habit formation in
consumption).

• Issues with labor and wages:
▶ Frisch elasticity is too high (include indivisible labor à la Hansen-Rogerson or search frictions).
▶ Debate about the procyclicality of real wages (nominal rigidity?)
▶ Hours worked decrease after a technological shock (Galí, 1999)

• Depends heavily on shock persistence. Do we trust the Solow Residual measure?
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Indivisible Labor

• Problem: RBC generates little fluctuation in hours worked (with a high Frisch elasticity),

• Interpretation: hours worked in the model are represented as intensive margin (average
hours worked), but in the data, most of the margin is extensive (number of individuals
working).

• Solution: Indivisible labor - Rogerson (1988) and Hansen (1985).

• Suppose the worker has only two choices:
▶ Work full-time (Nt = N̂ ∈ (0, 1) fixed hours) or not work (Nt = 0).

• Discrete choice generates non-convexities and discontinuities in the model ⇒ Solution:
Lotteries!
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Indivisible Labor

• Suppose that every period t, the family has probability pt of working.

• The family chooses pt, but N̂ is fixed: the amount of hours worked on average is
Nt = ptN̂ .

• Since markets are complete, all families buy “insurance” in case they cannot work and
receive the same wage wt.

u(Ct, Nt) = log(Ct) + θ

Ç
pt
(1− N̂)1−ϕ − 1

1− ϕ
+ (1− pt)

(1)1−ϕ − 1

1− ϕ

å
u(Ct, Nt) = log(Ct) + θpt

Ç
(1− N̂)1−ϕ − 1

1− ϕ
− (1)1−ϕ − 1

1− ϕ

å
+

(1)1−ϕ − 1

1− ϕ

u(Ct, Nt) = log(Ct)−Nt
1

N̂
θ

Ç
(1)1−ϕ − 1

1− ϕ
− (1− N̂)1−ϕ − 1

1− ϕ

å
︸ ︷︷ ︸

≡B

+
(1)1−ϕ − 1

1− ϕ︸ ︷︷ ︸
≡D
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Indivisible Labor

• Since D is just a constant, we can ignore it:

u(Ct, Nt) = log(Ct)−BNt

• Even if the individual Frisch Elasticity is very small (ϕ very high), the aggregate elasticity
is high.

▶ In fact, the aggregate Frisch Elasticity is infinite!

• The model generates greater amplification and is consistent with micro studies.
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Capital Utilization

• Another way to generate more amplification in the RBC model is to include variable
capital utilization (i.e., capacity utilization).

• Used capital is not entirely predetermined and can respond contemporaneously to a shock.

• Suppose production now depends on capital utilization ut ∈ [0, 1]:

Yt = Zt(utKt)
αN1−α

t .

• Cost of capital utilization, increased depreciation:

Kt+1 = It + (1− δf (ut))Kt

where δf is a convex and increasing function of ut.
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Capital Utilization

• Families choose how much capital is utilized (ut). The budget constraint:

Ct +Kt+1 = wtNt + (1 + rtut − δf (ut))Kt

• An additional first-order condition that defines ut in equilibrium

rt = δ′f (ut)

• The higher the interest rate, the higher the capital utilization.
▶ Positive shock: capital utilization responds in t and amplifies the shock.

• Requires careful definition of the function δf (will ut be interior or limited by the upper
constraint?)

• Requires even more careful measurement of the Solow Residual!
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Taking Stock

• We’ve seen the most basic version of the RBC model.

• We studied the core of the model’s shock transmission mechanism.

• Quantitatively, the model has:
▶ Positives: Replicates the volatility of output, consumption, and investment well.
▶ Negatives: Labor is not very volatile, and prices are not procyclical.

• We learned to solve the model by log-linearization and check the stability of the system.
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