
Macroeconomics I
Dynamic Programming

Tomás R. Martinez

INSPER

1 / 125

Introduction

• Up to this point, we have solved dynamic problems by finding the optimal sequence.

• This is not always practical and often counterintuitive.

• From now on, we will study how to solve the problem recursively, exploiting the fact that
decisions can be made period by period.

• This method is known as Dynamic Programming.

• It is particularly useful for solving problems numerically.

2 / 125

What We Learn in This Chapter

• The mathematical foundations of Dynamic Programming.

• How to write dynamic problems recursively.

• How to solve Dynamic Programming problems through value function iteration.

• How to write a recursive competitive equilibrium.

• The basics of markov chains and how to include it in DP problems.

3 / 125

References

• Dirk Krueger’s notes: Ch. 3, 4 and 5.

• Acemoglu: Ch. 6, and 16.

• PhD Macrobook Ch. 4.

• Pretty much the entire Stokey and Lucas with Prescott.

4 / 125

A Simple Example

• A simple example using the neoclassical growth model.

• We study the general case in detail later.

V (k0) = max
{kt+1}∞t=0

∞∑
t=0

βtu(f(kt) + (1− δ)kt − kt+1) (1)

s.t. 0 ≤ kt+1 ≤ f(kt) + (1− δ)kt for all t (2)
k0 given. (3)

• Note that V (k0) is the total value of the problem at time 0 for an economy starting with
capital k0.

5 / 125

A Simple Example

Suppose δ = 1 for simplicity.

V (k0) = max
{kt+1}∞t=0

∞∑
t=0

βtu(f(kt)− kt+1) (4)

= max
{kt+1}∞t=0

{
u(f(k0)− k1) + β

∞∑
t=1

βt−1u(f(kt)− kt+1)

}
(5)

=max
{k1}

{
u(f(k0)− k1) + β

[
max

{kt+1}∞t=1

∞∑
t=1

βt−1u(f(kt)− kt+1)

]}
(6)

=max
{k1}

u(f(k0)− k1) + β

[
max

{kt+2}∞t=0

∞∑
t=0

βtu(f(kt+1)− kt+2)

]
︸ ︷︷ ︸

=V (k1)

 (7)

V (k0) =max
k1

u(f(k0)− k1) + βV (k1) (8)6 / 125

A Simple Example

V (k0) = max
0≤k1≤f(k0)+(1−δ)k0

u(f(k0) + (1− δ)k0 − k1) + βV (k1) (9)

• Instead of maximizing an infinite sequence, we only need to find k1.

• On the other hand, we do not know the form of the V () function, i.e., V () is a functional
equation.

• Note that the solution k1 = g(k0) is a function of k0.

7 / 125

Bellman Equation

• Since the problem is the same in all periods, we can generalize:

V (k) = max
0≤k′≤f(k)+(1−δ)k

u(f(k) + (1− δ)k − k′) + βV (k′) (10)

where k is current capital and k′ is capital in the next period.

• This is the famous value function or the Bellman Equation.

• Under what conditions can we generalize? Conceptually, the two problems are different:
▶ V (k0) is the sequential formulation, the value of the discounted infinite sum of the utility

evaluated at the optimum.
▶ V (k) is the recursive problem, the value function that solves the dynamic programming

problem.

• Under certain conditions, the solutions to these two problems are the same.

8 / 125

Bellman Equation

• If the solutions to these two problems are the same, there is no need to find the entire
sequence of {kt}∞t=0 to solve the model!

• We can just find the solution (i.e., the max) of the recursive problem:

V (k) = max
0≤k′≤f(k)

{u(f(k)− k′) + βV (k′)} (11)

which is the function k′ = g(k)!

• Then starting from k0 we can find the entire sequence: k1 = g(k0), k2 = g(k1), ...,
kt+1 = g(kt)!

• Problem: we cannot solve the max since we do know V (k′).

9 / 125

Mathematical Preliminaries

10 / 125

Bellman Equation

Functional Equation:

V (x) = sup
y∈Γ(x)

{F (x, y) + βV (y)} (12)

• x is the state variable.

• y is the control variable.

• Γ : X → Y is the feasible set correspondence.

• F : X × Y → R is the instantaneous return function.

g(x) = arg sup
y∈Γ(x)

{F (x, y) + βV (y)} (13)

• g(x) is the policy function.

11 / 125

Bellman Equation

Sequential Problem:

V ∗(x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1) (SP) (14)

s.t. xt+1 ∈ Γ(xt) for all t (15)
x0 given. (16)

Functional Equation:

V (x) = sup
y∈Γ(x)

{F (x, y) + βV (y)} (FE) (17)

• Under which conditions is the solution to the SP problem equal to the FE?

• How can we find the solution to the FE problem, and under what conditions is the solution
unique?

12 / 125

The Operator T

• To solve the sup and find the policy function g(x), we first need to find the function V .
• Define the T operator:

(TV)(x) = sup
y∈Γ(x)

{F (x, y) + βV (y)} (18)

• The T operator is a “function’ that maps a function V to another function V , i.e.,
T : C → C, where C is the set of possible functions.

• The ultimate goal is to find the fixed point of the operator, i.e., find the function V for
which V = TV .

• We will use the Banach Fixed-Point Theorem.

13 / 125

Banach Fixed-Point Theorem

Theorem (Banach Fixed-Point Theorem - Contraction Mapping Theorem)
If (S, d) is a complete metric space and T : S → S is a contraction with modulus β, then:

1. T has exactly one fixed point in S, i.e., there exists only one V such that TV = V ;
2. For any v0 ∈ S, d(TnV0, V) ≤ βnd(V0, V), for n = 1, 2, ..

• Writing the operator as:

Vn+1(x) = (TV)(x) = sup
y∈Γ(x)

{F (x, y) + βVn(y)} (19)

• If the conditions of Banach are satisfied, the theorem gives us a simple algorithm: guess
V0 and iterate on the operator until the distance between Vn and Vn+1 is sufficiently small.
• It also guarantees the uniqueness of V !
• Proof: (SLP/A) Use the definition of contraction and the triangle inequality property of

the norm.
14 / 125

Road Map

• We need to define the domain of the T operator and what convergence of sequences
means within this space ⇒ Define a complete metric space.

• Then we have to define what a contraction is and under what conditions T is a
contraction.

• Sometimes it’s not trivial to show that T is a map from a function to itself (especially
when there is a sup). We will use the Berge’s Maximum Theorem to guarantee this.

• Finally, knowing that we are in a complete metric space and that T is a contraction and
maps a function to itself, we can approximate our value function using the Banach
Fixed-Point Theorem.

15 / 125

Metric Spaces

Definition (Vector Space)
A vector space X is a set that is closed under vector addition (finite) and scalar multiplication.
Let f, g ∈ X and α ∈ R:

1. Addition: (f + g)(x) = f(x) + g(x)

2. Scalar multiplication: (αf)(x) = αf(x)

To discuss convergence, we also need a notion of distance (between two elements within a set):

Definition (Metric Space)
A metric space is a non-empty set S and a metric d : S ×S → R such that for all x, y, z ∈ S:

1. d(x, y) ≥ 0 with equality if x = y;
2. d(y, x) = d(y, x);
3. d(x, z) ≤ d(x, y) + d(y, z).

16 / 125

Metric Spaces

• For vector spaces, we define metrics in such a way that the distance between two vectors is
equal to the distance between their difference and zero: d(x, y) = d(x− y, 0⃗).

Definition (Normed Vector Space)
A normed vector space is a vector space S and a norm ||.|| : S → R such that for all x, y ∈ S
and α ∈ R:

1. ||x|| ≥ 0 with equality if and only if x = 0⃗;

2. ||αx|| = |α| ||x||;

3. ||x+ y|| ≤ ||x||+ ||y||.

• In other words, a normed vector space is a pair (X, ||.||), where X is a vector space and
d(x, y) = ||x− y||.

• Okay, but we are interested in the distance between functions.

17 / 125

Metric Spaces with Functions

• Example: Let C(X) be the set of continuous and bounded functions with domain [a, b] in
R, and x, y ∈ C(X). Define d(x, y) as:

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|. (20)

Thus, the pair (C(X), d) is a metric space.
• Verify that the conditions are satisfied:

1. d(x, y) = maxt∈[a,b] |x(t)− y(t)| = |x(t∗)− y(t∗)| ≥ 0 where t∗ is the maximizer, and
equality if and only if x = y;

2. d(x, y) = maxt∈[a,b] |x(t)− y(t)| = maxt∈[a,b] |y(t)− x(t)| = d(y, x).
3. d(x, z) = maxt∈[a,b] |x(t)− z(t)| = |x(t∗)− z(t∗)| ≤ |x(t∗)− y(t∗)|+ |y(t∗)− z(t∗)| =

maxt∈[a,b] |x(t)− y(t)|+maxt∈[a,b] |y(t)− z(t)| = d(x, y) + d(y, z)

• In general, we will use the supremum norm (uniform norm) as the measure of distance
between functions: ||f || = supx∈X |f(x)|.

18 / 125

Convergence of Sequences

• We have a definition of space and distance. Now we can define a sequence convergence
applied to any metric space.

Definition (Convergence of Sequences)
A sequence {xn}∞n=0 in S converges to x ∈ S if, for every ε > 0, there exists an Nε such that:

d(xn, x) < ε, for all n ≥ Nε (21)

• In other words, a sequence {xn}∞n=0 in a metric space (S, d) if and only if the sequence
{d(xn, x)}∞n=0 converges to zero.

Definition (Cauchy Sequence)
A sequence {xn}∞n=0 in S is a Cauchy sequence if, for every ε > 0, there exists an Nε such that:

d(xn, xm) < ε, for all n, m ≥ Nε (22)

• Note: Every convergent sequence is Cauchy, but the converse is not true.
19 / 125

Convergence of Sequences

• Intuitively, to determine if a sequence is Cauchy, it is enough to know the points of the
sequence and not necessarily where it converges.

• This makes it easier to identify a Cauchy sequence than a convergent sequence.

Definition (Complete Metric Space)
A metric space (S, d) is complete if every Cauchy sequence in S converges to an element in S.

• Ok, but we are interested in the convergence of limn→∞ Vn = V , and now?

20 / 125

Banach Space

Theorem
Let X ⊆ Rl and C(X) be the set of continuous and bounded functions f : X → R with the
supremum norm, ||f || = supx∈X |f(x)|. Then C(X) is a complete normed space (Banach
Space).

• Proof (intuition): It is necessary to demonstrate that C(X) is a normed space and, more
importantly, complete. This involves showing that there exists a Cauchy sequence fn. The
trick is that convergence in the supremum norm is uniform convergence, and uniform
convergence preserves continuity.
• In other words, we have a sequence of functions Vn in C(X) and the limit of the sequence

is also in C(X).
• Now that we know we are looking for our function V in a Banach space, if the operator T

is a contraction, we can use the Banach Fixed-Point Theorem.

21 / 125

Contraction

Definition (Contraction)
Let (S, d) be a metric space, and T : S → S be a function that maps S to itself. T is a
contraction with modulus β if for some β ∈ (0, 1), d(Tx, Ty) ≤ βd(x, y), for all x, y ∈ S.

• Okay, satisfying the Banach Space is easy: just choose continuous and bounded functions
and use the supremum norm. How to show that T is a contraction?

• Use the definition of contraction and check if it is satisfied by T .

• Often it is complicated, and that’s why it is convenient to use the Blackwell’s Sufficient
Conditions.

22 / 125

Contraction

Theorem (Blackwell’s Sufficient Conditions)

Let X ⊆ Rl, and let B(X) be the space of bounded functions: f : X → R, with the supremum
norm. Let T : B(X)→ B(X) be an operator that satisfies:

1. (monotonicity) f, g ∈ B(X) and f(x) ≤ g(x) for all x ∈ X implies that
(Tf)(x) ≤ (Tg)(x) for all x ∈ X;

2. (discount) There exists some β ∈ (0, 1) such that [T (f + c)(x) ≤ (Tf)(x) + βc for all
f ∈ B(X), c ≥ 0, and x ∈ X.

Then T is a contraction with modulus β.

23 / 125

Example

Neoclassical Growth Model:

(TV)(k) = max
0≤k′≤f(k)

{u(f(k)− k′) + βV (k′)} (23)

1. (monotonicity) Let W (k) ≥ V (k) for all k.

(TW)(k) = max
0≤k′≤f(k)

u(f(k)− k′) + βW (k′) (24)

≥ max
0≤k′≤f(k)

u(f(k)− k′) + βV (k′) = (TV)(k) (25)

for a 0 ≤ k′ ≤ f(k) (fixed k, i.e., the possible set does not change), and W (k′) ≥ V (k′)
by assumption.

2. (discount) For c ≥ 0:

[T (V + c)](k) = max
0≤k′≤f(k)

{u(f(k)− k′) + β(V (k′) + c)} (26)

= max
0≤k′≤f(k)

{u(f(k)− k′) + βV (k′)}+ βc = (TV)(k) + βc (27)

24 / 125

Maximum Theorem

• Note that for T to be a contraction, the operator needs to result in a function within the
same space C(X).
• Under normal conditions, it is easy to demonstrate this (sum of continuous bounded

functions is continuous and bounded, etc.), but in our case, we have the sup that makes
the situation more complicated.
• Consider the problem:

sup
y∈Γ(x)

f(x, y) (28)

• Suppose f(x, .) is continuous in y (for a fixed x) and Γ(x) is a compact and non-empty
set. Hence, the maximum exists, and the value function is well-defined:

h(x) = max
y∈Γ(x)

f(x, y), (29)

as well as the optimal policy correspondence:

G(x) = arg max
y∈Γ(x)

f(x, y) = {y ∈ Γ(x); f(x, y) = h(x)} (30)

25 / 125

Maximum Theorem

Theorem (Bergé’s Maximum Theorem)
Let f : X × Y → R be a continuous function, and Γ : X → Y be a non-empty, continuous,
and compact-valued correspondence. Then:

1. The value function h : X → R is continuous;
2. The decision rule G : X → Y is non-empty, upper hemi-continuous, and has compact

values.

Lemma (Convex Maximum Theorem)

Let X ⊆ Rl and Y ⊆ Rm. Suppose Γ : X → Y is non-empty, continuous, has compact and
convex values. Let f : X × Y → R be a continuous and concave function, for each x ∈ X.

1. The value function h(x) is concave, and the correspondence G(x) has convex values.
2. If f is strictly concave in y for every x, then G(x) is continuous with a unique value (not a

correspondence).

26 / 125

Maximum Theorem

• Note that the Maximum Theorem ensures that our operator has a solution and that the
solution is continuous.
• There is also a generalized version where f is a correspondence, but it will not be

necessary for our problems.
• The lemma ensures that the solution is unique and that the operator has a concave

solution.
Example: Neoclassical Growth Model
• u(f(k)− k′) + βV (k′): u and f are continuous functions, so if V (k′) is continuous, the

sum will be a continuous function.
• Γ(k) = [0, f(k)]: 0 and f(k) are continuous functions of k, so Γ(k) is non-empty,

continuous, and has compact values.
By the Maximum Theorem, V (k) = maxk′∈[0,f(k)] u(f(k)− k′) + βV (k′) is also continuous.
With similar arguments, we can say that V (k) is bounded and concave.

27 / 125

Dynamic Programming

• That is, in the neoclassical growth model (and in many others), we can guess a solution
V0(k) that is continuous and bounded (and depending on the problem, concave).

• Given the usual assumptions on u, f , and β ∈ (0, 1), we can establish via the Maximum
Theorem and Blackwell’s Sufficient Conditions that the operator (TV)(k) is a contraction.

• Since our distance metric between functions is the supremum norm, we are in a Banach
space and can apply the Banach Fixed-Point Theorem.

• Therefore, there is only one solution V , and we can approximate it by iterating via the
operator, Vn+1 = TV , until the point where the distance between ||Vn+1 − Vn|| is small
enough.

28 / 125

Dynamic Programming Under Certainty

29 / 125

Bellman Equation

Sequential Problem:

V ∗(x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1) (SP) (31)

s.t. xt+1 ∈ Γ(xt) for all t (32)
x0 given. (33)

Functional Equation:

V (x) = sup
y∈Γ(x)

{F (x, y) + βV (y)} (FE) (34)

Questions:
1. Does the solution of (FE) also satisfy (SP)? Is the policy function equivalent to the

optimal sequence?

2. How can we find the solution to (FE)?
30 / 125

Notation and Definitions

• X is the set of possible values of the state variable.

• Possible Plan: a sequence {xt+1}∞t=0 satisfying xt+1 ∈ Γ(xt) for all t.

• A set of possible plans (given x0): Π(x0) = {{xt+1}∞t=0 : xt+1 ∈ Γ(xt)}.

• For every n = 0, 1..., the partial sum of (discounted) returns given a possible plan x̃ is
defined as:

un(x̃) =

n∑
t=0

F (xt, xt+1). (35)

31 / 125

Principle of Optimality

• The idea that (FE) ⇔ (SP) is called the Principle of Optimality.

• Basically, there are four steps:
1. Show that the supremum of (SP) V ∗(x0) satisfies (FE): (SP)⇒ (FE).

2. Show that if there exists a solution to (FE) (and if limn→∞ βnV (xn) = 0), then it is given
by V ∗(x0): (FE)⇒ (SP).

3. Show that the sequence {xt+1}∞t=0 that achieves the supremum of (SP) satisfies V = V ∗.

4. Show that any sequence {xt+1}∞t=0 that satisfies V = V ∗ and limn→∞ βnV (xn) ≤ 0
achieves the supremum of (SP).

• Assumptions:
▶ (A1) Γ(x) is non-empty.

▶ (A2) limn→∞ un(x̃) exists for every x̃ ∈ Π(x0) (a sufficient condition is to have F (xt, xt+1)
bounded and β ∈ (0, 1)).

• That’s it. Pretty simple, right?
32 / 125

Principle of Optimality

• We won’t go through the complete proof (see SLP Theorems 4.2-4.5), but instead, we’ll
provide some intuition.

• First: (A1) and (A2) ensure that (SP) is uniquely well-defined.

• (A1) is not very interesting, just ensuring that we can choose some sequence.

• (A2) is where all the power of the Principle of Optimality is, along with the assumption
limn→∞ βnV (xn) = 0.

▶ Note that (FE) can have multiple solutions. Remember the conditions of the Contraction
Mapping Theorem.

▶ But if there is a solution to (FE), and the solution satisfies the extra condition
limn→∞ βnV (xn) = 0, then this is the solution to (SP) (which is necessarily unique).

▶ Remember the TVC. There is no equivalent condition for the recursive form, but in a sense,
the extra condition puts an upper limit on utility growth.

▶ SLP has some interesting examples to illustrate this condition.

33 / 125

Bellman Equations

• Now, we’ve already established that under quite mild assumptions, (SP) ⇔ (FE).

• We can then focus on Bellman’s equations and study this problem more carefully, including
how to find the solution.

• Assumptions (let’s differentiate from the previous ones):
▶ (B1): Γ(x) is a non-empty, continuous correspondence with compact values.
▶ (B2): F (x, y) is bounded and continuous.

• (Thm) Suppose (B1) and (B2). We can use the mathematical tools from the last section
and:

▶ Define an operator T : C(X)→ C(X).
▶ T : has exactly one unique fixed point.
▶ For any V0 ∈ C(X), we can approximate via iteration |TnV0 − V || ≤ βn||V0 − V ||,

n = 0, 1, 2...
▶ The policy correspondence G is upper hemicontinuous and has compact values.

34 / 125

Bellman Equations

• More assumptions:
▶ (B3): F (x, y) is strictly concave.
▶ (B4): Γ(x) has convex values.

• (Thm) Suppose (B1), (B2), (B3), and (B4): V is strictly concave, and G is continuous
and uniquely defined. In other words, G is a policy function.

• Here we use the lemma of the Maximum Theorem with convexity.

• Note that the neoclassical growth model trivially satisfies these assumptions.

• But it is not uncommon to find models that do not satisfy these assumptions (e.g., models
with discrete choice, where the individual chooses to work or not, etc.)

35 / 125

Bellman Equations

• More assumptions:
▶ (B5): For every y, F (., y) is strictly increasing.
▶ (B6): Γ(x) is monotone. In other words, if x ≤ x′, then Γ(x) ⊆ Γ(x′).

• (Thm) Suppose (B1), (B2), (B5), and (B6): V is strictly increasing.

• Sketch of the proof. Let x0 < x1:

V (x0) = max
y∈Γ(x0)

{F (x0, y) + βV (y)}

=F (x0, g(x0)) + βV (g(x0)), for some g(x0)

<F (x1, g(x0)) + βV (g(x0))

≤ max
y∈Γ(x1)

{F (x1, y)) + βV (y)} = V (x1)

• Example: Show that the neoclassical growth model satisfies (B5), and (B6).

• Monotonicity of the value function is a property often exploited numerically to find the
solution to Bellman’s equation.

36 / 125

Bellman Equations

• Finally, it is interesting to think about how to use calculus to characterize the solution of
(FE).

• We saw that under certain conditions, the Euler Equation is a necessary condition (but not
sufficient - remember TVC) for a solution.

• (B7): F is continuously differentiable in the interior of the set X × Y .

• How can we know the result of the differentiation on V ? Envelope Theorem.

Theorem (Benveniste-Scheinkman or Envelope Theorem)

Let X ⊆ Rl, V : X → R be concave, x0 ∈ int(X), and D a neighborhood of x0. If there exists
a differentiable function W : X → R with W (x0) and W (x) ≤ V (x) for every x ∈ D, then V
is differentiable at x0, and Vi(x0) = Wi(x0) for i = 1, 2, ..., l.

37 / 125

Envelope Theorem

• The envelope theorem tells us that if we find a
function W (x) ≤ V (x), we can use the derivative of
this function to find Vi(x).

• In our case:

W (x) =F (x, g(x0)) + βV (g(x0))

≤max
y
{F (x, y) + βV (y)) = V (x)

• Note that g(x0) is the optimal policy at x0 (but
may not be at x) and V (g(x0)) is a number (not a
function).

• Therefore: Wi(x0) = Fi(x0, g(x0)) = Vi(x0).

38 / 125

Envelope Theorem

• (Thm) Suppose (B1), (B2), (B3), (B4), and (B7). If x0 ∈ int(X) and
g(x0) ∈ int(Γ(x0)), then V is continuously differentiable at x0, where the derivative is
given by:

Vi(x0) =Fi(x0, g(x0)), i = 1, 2, ..., l.

• In words: the derivative of the value function is equal to the derivative of the return
function, F (x, y), at the arguments x with y evaluated at the optimum.

• In the neoclassical growth model (with δ = 1): Vk(k0) = u′(f(k0)− g(k0))f
′(k0).

• Intuitively: Vk(k0) = u′()f ′(k0)−g′(k0)u′() + g′(k0)βV
′(g(k0))︸ ︷︷ ︸

=0 f.o.c. (interior)

39 / 125

Euler Equation

• Given our assumptions, we can derive an Euler Equation for the problem:

V (x) = max
y∈Γ(x)

{F (x, y) + βV (y)}

g(x) = arg max
y∈Γ(x)

{F (x, y) + βV (y)}

• F.O.C. (interior solution of max): Fy(x, y
∗(x)) + βVy(y

∗(x)) = 0.
• Applying the Envelope Theorem: Vx(x) = Fx(x, y

∗(x)).
• Substituting, we find the general form of the Euler Equation:

Fy(x, y
∗(x)) + βVy(y

∗(x)) = 0

Fy(x, y
∗(x)) + βFx(y

∗(x), y∗(y∗(x))) = 0

or Fxt+1(xt, xt+1) + βFxt+1(xt+1, xt+2) = 0

40 / 125

Example

Once again, let’s look at the Neoclassical Growth Model (with δ = 1)

V (k) = max
k′∈[0,f(k)]

u(f(k)− k′) + βV (k′) (36)

• State variable: k;
• Control variable: k′;
• Feasible set: Γ(k) = [0, f(k)];
• Return function: F (k, k′) = u(f(k)− k′).

Assumptions
• f : R+ → R is continuously differentiable, strictly increasing, and concave;
• f(0) = 0 and for some k > 0, k ≤ f(k) ≤ k, for every k ∈ [0, k] and f(k) < k for every

k > k .
• u : R+ → R is continuously differentiable, strictly increasing, and concave; β ∈ (0, 1).

41 / 125

Example

• It is easy to show that most of the required assumptions are satisfied.

• Perhaps the less intuitive one is that the return function should be bounded.

• Just remember that given the assumptions on the production function, the economy will
eventually reach the steady state.

▶ If we start the economy at k0 < kss, there will be capital accumulation until kss. Therefore,
capital will always be bounded by kss.

▶ If k0 > kss, there will be capital decumulation until kss. Therefore, capital will be bounded
by k0.

• Capital is limited by max{k0, kss}.

• Therefore, Γ(k) has compact value, and u(k, k′) is bounded. Given the other assumptions,
(B1) and (B2) are satisfied. ⇒ the Principle Optimality and Banach Fixed Point can be
applied.

42 / 125

Example

• u is strictly concave, and clearly Γ ∈ [0, f(k)] has convex value (since f(k) is continuous),
so (B3) and (B4) are satisfied.

▶ Lemma of the Maximum Theorem applies, and the value function will be strictly concave,
and the optimal policy will be a continuous function.

• u(k, k′) is strictly increasing in k, and Γ ∈ [0, f(k)] is monotonic (since f(k) is strictly
increasing), so (B5) and (B6) are satisfied.

▶ V (k) is a strictly increasing function.

• u and f are differentiable, (B7), so the function is differentiable (Envelope Theorem). If k
is interior:

V ′(k) = u′(f(k)− g(k))f ′(k)

Note that if the Inada conditions are satisfied, g(k) will be interior.

43 / 125

Example

• Finally, we take the first-order condition of the functional equation problem:

u′(f(k)− g(k)) = βV ′(k)

• Combining with the Envelope Theorem:

u′(f(k)− g(k)) = βf ′(g(k))u′(f(g(k)− g(g(k)))

u′(ct) = βf ′(kt+1)u
′(ct+1)

• Finally, we find our Euler Equation.

44 / 125

Finding the Value Function

How to Find the Value Function?

1. Guess and verify / method of undetermined coefficients.

2. Iterative process (e.g., value function iteration).

45 / 125

Guess and Verify

• Under certain conditions, we can solve the sequential problem analytically.

• Similarly, we can solve the value function analytically in special cases.

• Suppose u(c) = ln(c), f(k) = kα and δ = 1.

• Guess that the value function has the following form:

V = A+B ln(k)

A and B are the coefficients that need to be found.

• Let’s proceed in 3 steps.

46 / 125

Guess and Verify

Step 1: Solve the maximization problem

V = max
0≤k′≤kα

{ln
(
kα − k′

)
+ β(A+B ln

(
k′
)
)}

The FOC is sufficient, and the solution is interior:

k′ =
βBkα

1 + βB

Step 2: Evaluate the right-hand side at the optimal k′

V = − ln(1 + βB) + α ln(k) + βA+ βB ln

Å
βB

1 + βB

ã
+ αβB ln(k)

47 / 125

Guess and Verify

Step 3: Substitute the left-hand side with the guess and find A and B

A+B ln(k) = − ln(1 + βB) + α ln(k) + βA+ βB ln

Å
βB

1 + βB

ã
+ αβB ln(k)

(B − α(1 + βB)) ln(k) = −A− ln(1 + βB) + βA+ βB ln

Å
βB

1 + βB

ã
Note that the only way for the left-hand side (which depends on k) to be equal to the right is if
(B − α(1 + βB)) = 0:

B =
α

1− αβ
,

substituting B on the right and setting it to zero:

A =
β

1− β

ï
αβ

1− αβ
ln(αβ) + ln(1− αβ)

ò
.

48 / 125

Iterative Proces: Value Function Iteration

• By the Banach Fixed Point Theorem, we know that if we guess a function V0(k) ∈ C(k)
and iterate forward, our guess converges geometrically (βn) to the unique solution V .

• Pseudo-algorithm:
1. Choose an initial guess V0 and a tolerance level ε > 0.
2. Compute Vn+1 using the operator:

Vn+1(k) = max
0≤k≤f(k)+(1−δ)k

{u(f(k) + (1− δ)k − k′) + βVn(k)}

This involves solving the maximization problem and evaluating using k′∗ optimal.
3. Calculate d = sup ||Vn+1 − Vn||.
4. If d < ε, we found the value function Vn+1 = V . Otherwise, update the guess, Vn = Vn+1,

and return to step 2.

• Note that we won’t iterate to infinity (our life is finite). On the other hand, we have to
choose a small ε for a good approximation.

49 / 125

Value Function Iteration

• In practice, we’ll use the Value Function Iteration (VFI) on the computer.

• If you want to try iterating analytically, use the example of the method of undetermined
coefficients and guess V0 = 0. Check that Vn+1 approaches the found solution.

• On the computer, we have to consider a few details:
1. How to approximate V ?
2. How to solve the maximization problem?

• I’ll describe the simplest version to solve the problem numerically: VFI with piecewise
linear function discretized on a grid and using grid search for maximization.

• This method is the most robust, and we know exactly the conditions for its operation, but
there are faster methods that require extra assumptions, such as using the Euler Equation
or the policy function.

50 / 125

Value Function Iteration

1. Discretize the space k into a vector with I points between K and K. Define the points on
the grid as {K1,K2, ...,KI}.

▶ The number of points I is determined by the trade-off between speed and accuracy.
▶ Points can be equidistant or, depending on the problem, in the region with higher curvature

of the value function.
▶ Choose K and K so that 0 < K < kss < K.

2. The value function will be stored in a vector with I points: {Vi}Ii=1. Each point of Vi is
the value associated with capital ki. Initialize the vector with your “guess” V 0.

3. Compute V n+1
i using the procedure for all i (grid search):

V n+1
i,j =

®
u(f(ki) + (1− δ)ki − kj) + βV n

j , if f(ki) + (1− δ)ki − kj = ci,j > 0

−∞, if f(ki) + (1− δ)ki − kj = ci,j ≤ 0

V n+1
i =max{V n+1

i,1 , V n+1
i,2 , ..., V n+1

i,I }

4. Calculate d = maxi=1,..,I |V n+1
i − V n

i |. If d < ε, we found the value function Vn+1 = V .
Otherwise, update the guess, Vn = Vn+1, and return to the previous step.

51 / 125

Value Function Iteration

• When finished, it’s good to do some diagnostics:
▶ Check if the chosen limits K and K are sufficiently high so that the solution is interior.
▶ Try decreasing the tolerance ε or the number of points I a bit more. If your approximation is

good, V shouldn’t change much.

• Maximization tends to be the most computationally costly step.
▶ Often, it can be sped up by exploiting properties of V (concavity, monotonicity).
▶ It can be done via grid search or using interpolation with an optimization algorithm (Newton,

etc.).

• The policy function (via grid search) gi = j is a map from one grid point i to another grid
point j.

▶ To evaluate points “outside the grid”, you have to use some kind of interpolation.

52 / 125

Examples

53 / 125

Example: Finite T

• We have studied infinite horizons problems: the problem is the same in every period.

• This is not the case in problems in finite horizons or non-stationary problems.

• Consider the “Cake-Eating” problem: the agent is born with assets a0 and must consume
the cake until his death at T .

V (a0) = max
{at+1}Tt=0

T∑
t=0

βtu(ct), u follows the usual assumptions, (37)

s.t. ct + at+1 = at(1 + r), for t = 0, 1, .., T (38)
a0 given.

• In period t = 0, the agent will choose to save some portion of the cake (regardless of a0).
In period t = T , the agent will choose to consume everything (no more utility at T + 1).

54 / 125

Example: Finite T

• The optimal decision will depend on the time period (his age).

• In recursive form:

Vt(a) = max
a′∈[0,a(1+r)]

{u(a(1 + r)− a′) + βVt+1(a
′)} (39)

▶ State variable: a and t;
▶ Control variable: a′;
▶ Feasible set: Γ(a) = [0, a(1 + r)];
▶ Return function: F (a, a′) = u(a(1 + r)− a′).

• The age of the agent (t) is a state variable (we can also write V (a, t)).

55 / 125

Solving the Problem

• Instead of iterating the value function until it converges, we can solve finite horizon
problems by backward induction.

• In period T : VT+1 = 0 and gT (a) = 0. Thus, VT (a) = u(a(1 + r)).

• From there, we can find VT−1(a), VT−2(a), ..., V1(a).

• Problems in which the value function depends on T are considered non-stationary dynamic
programming problems.

• The simplest problems are finite sequences, but it also includes problems with an infinite
sequence in which some parameter or function depends on T .

▶ We will not study non-stationary infinite sequence problems. With some modifications, the
theorems we have seen apply to these situations as well (see Acemoglu chap. 6).

56 / 125

Example: 2-period McCall Search Model

• Two periods: t = 1, 2.

• Each period, the agent receives an iid wage offer w from a c.d.f F (w) with support [ω, ω].

• Decision:
▶ If accepted (A): receives w in the current period and until the end of life.
▶ If rejected (R): receives α ∈ (ω, ω) in the current period and receives a new offer in the next

period (if alive).

• A typical Real Option problem (sometimes we call the value function the asset value
equation).

• Linear utility and β ∈ (0, 1): the agent maximizes: E[y0 + βy1], where yt is either α or w.

• The solution requires finding the reservation wage wt,R. The wage at which the agent is
indifferent to accepting or rejecting the job offer.

57 / 125

Example: 2-period McCall Search Model

• State: w and t.
• Control: discrete choice c = {A, R}, or we can represent it as an indicator function

c = {1, 0}, where 1 is acceptance.

• Return function: F (w) =

ß
w if c = A,
α if c = R.

• Feasible set: Γ = {A, R}.

Solution: Period 2

• Value function: V2(w) =

ß
w if c = A,
α if c = R.

• Policy function: g2(w) =

ß
A if w ≥ α,
R if α < w.

• In other words, V2(w) = max{w,α} and reservation wage w2,R = α.

58 / 125

Example: 2-period McCall Search Model

Solution: Period 1

• Value function:
▶ Accept (A): V A

1 (w) = w + βw,
▶ Reject (R): V R

1 (w) = α+ βE[V2(w
′)]

• Policy function: g1(w) =

ß
A if V A

1 (w) ≥ V R
1 (w),

R if V A
1 (w) < V R

1 (w).

• That is, V2(w) = max{w(1 + β), α+ βE[V2(w)]}, where:

E[V2(w)] =

∫ ω

ω
V2(w

′)dF (w′) =

∫ ω

ω
max{w′, α}dF (w′)

=

∫ α

ω
αdF (w′) +

∫ ω

α
w′dF (w′) = αF (α) +

∫ ω

α
w′dF (w′).

59 / 125

Example: 2-period McCall Search Model

Solution: Period 1

• Reservation wage in period 1:

w1,R(1 + β) = α+ β

ñ
αF (α) +

∫ ω

α
w′dF (w′)

ô
w1,R =

α

(1 + β)
+

β

(1 + β)

ñ
αF (α) +

∫ ω

α
w′dF (w′)

ô
• That is, V A

1 (w1,R) = V R
1 (w1,R)

60 / 125

Recursive Competitive Equilibrium

61 / 125

Recursive Competitive Equilibrium

• Just as we used the Social Planner, dynamic programming simplifies the dynamic problem.

• But, in the end, we are interested in is the equilibrium of the model. How to describe
competitive equilibrium in recursive form?

• Let’s write the Bellman equation for the agents making dynamic choices. In the
Neoclassical Growth model, these are the households.

• What are the state variables? k and...?
▶ And the prices? r and w...
▶ Prices are functions of capital (MPK and MPL).

• But the Bellman equation represents the problem of a single household, and the decision
of a single household cannot change the prices of the economy!

▶ An agent (in a competitive equilibrium) takes prices as given! They are atomistic.

62 / 125

Recursive Competitive Equilibrium: The ‘big K, little k’ trick

• Differentiate the “aggregate” capital of the economy, K, from the capital of a household,
k: The ‘big K, little k’ trick.

• Assumptions: a continuum of individuals i with unit measure, and all agents are symmetric:

K =

∫ 1

0
kidi =

∫ 1

0
kdi (40)

meaning, the aggregate capital is the sum of the capital of all households.
▶ Note that in this case, it is trivial that K = k since all agents are the same and therefore

make the same decision.
▶ But this distinction is important if agents are heterogeneous!

• Prices r and w are functions of aggregated capital (and if relevant for the problem, of
aggregated labor N =

∫ 1
0 nidi = 1).

• Households do not choose the aggregate state K, but they form expectations about its
evolution.

63 / 125

Recursive Competitive Equilibrium: Neoclassical Growth

Firm’s Problem
• The firm’s problem is static.

▶ If firms were heterogeneous, we would have to aggregate the demand of all firms f :
Kd =

∫
f∈F

kdfdf .

• In this case, we will simplify and assume a representative firm (and solve the problem using
aggregated variables).

max
K,L

F (K,L)− r(K)K − w(K)L

• First-order conditions:

r(K) = FK(K, 1) and w(K) = FL(K, 1)

• In other words, prices are functions of aggregated states.

64 / 125

Recursive Competitive Equilibrium: Neoclassical Growth

Household’s Problem
• State: k and K.

V (k,K) = max
c, k′≥0

{u(c) + βV (k′,K ′)}

s.t. c+ k′ = w(K) + (1 + r(K)− δ)k

K ′ = H(K)

• Policy functions: c∗ = gc(k,K) and k
′∗ = gk(k,K).

• K ′ = H(K) is the perceived law of motion by the agent.

• Agents do not choose K but form expectations about its evolution (and therefore about
future prices!).

• Rational Expectations: Agents are rational and “know” the model. Thus, the perceived
law of motion will be equal to the true law of motion.

65 / 125

Recursive Competitive Equilibrium: Neoclassical Growth

• Definition: A recursive competitive equilibrium is a value function, V , policy functions gk

and gc, price functions, r and w, and aggregate law of motion H, that:

1. Given the functions, r, w, and H, the value function V is the solution to the Bellman
equation of households with decision rules gk and gc.

2. Prices satisfy:

r(K) = Fk(K, 1) and w(K) = FL(K, 1).

3. Agent’s expectations are rational (or the perceived law of motion is consistent with the true
law of motion):

H(K) = gk(K,K).

4. Market clearing for all K (note we are aggregating ki):

gc(K,K) + gk(K,K) = F (K, 1) + (1− δ)K.

66 / 125

Recursive Competitive Equilibrium: Neoclassical Growth

• The definition of a recursive equilibrium is usual, except for point 3.

• Point 3 explicitly states that in equilibrium the perceived law of motion must be equal to
the realized law of motion when aggregating individual agent decisions:

K ′ = H(K) =

∫ 1

0
k

′∗
i di = g(K,K),

where, in equilibrium, we can use the trick k = K.

• In other words, agents have rational expectations: they choose gk(k,K) and expect
H(K). Correct expectations imply K = k and prices that are consistent with the choices
of households.

• This implies a Fixed Point: Policy functions depend on K, and K is the result of
aggregating gk.

▶ In this problem, this is trivial, but with heterogeneous agents, it can be a costly part of
solving the model.

67 / 125

Example: Externality in the Production Function

• Consider an economy with a continuum of firms indexed by j ∈ [0, 1].

• Production function of an individual firm: yt = kαt l
1−α
t Kγ

t , where:
▶ kt and lt are the amounts of capital and labor hired by an individual firm;
▶ Kt is the aggregate capital of the economy (taken as given by the individual firm);
▶ and γ + α < 1, γ ≥ 0, and α > 0.
▶ Note that if γ > 0, there is a positive externality.

• There is a representative family with a unit mass that maximizes
∑∞

t=0 β
tU(Ct).

• Show that in the presence of externality, the Welfare Theorems will not be satisfied, and
the competitive equilibrium will not be efficient.

▶ In other words: Planner’s Solution ̸= Competitive Eq.

68 / 125

Production Externality: Planner

• Since all firms are the same (MPK and MPL are equal), the planner will allocate the same
amount of capital/labor to each firm.

• The planner also internalizes the production externality.

• Assuming Lt = 1 for all t. The planner’s problem in recursive form:

V (K) = max
C,K′>0

{U(C) + βV (K ′)}

s.t. C +K ′ = Kα+γ + (1− δ)K

• In summary:
V (K) = max

K′>0
{U(Kα+γ + (1− δ)K −K ′) + βV (K ′)}

69 / 125

Production Externality: Planner

• First-order condition:

−U ′(Kα+γ + (1− δ)K −K ′) + βV ′(K ′) = 0

• Envelope condition:

V ′(K) = [(α+ γ)Kα+γ−1 + (1− δ)]U ′(Kα+γ + (1− δ)K −K ′)

• Combining the two conditions, we find the Euler equation (planner):

U ′(Kα+γ + (1− δ)K −K ′︸ ︷︷ ︸
=C(K)

) = [(α+γ)(K ′)α+γ−1+(1−δ)]βU ′((K ′)α+γ + (1− δ)K ′ −K ′′︸ ︷︷ ︸
=C(K′)

)

70 / 125

Recursive Equilibrium: Production Externality

• To solve for the recursive equilibrium, we need to find the supply/demand for capital
through the solution of households and firms. The household problem is standard:

V (k,K) = max
c,k′>0

{U(c) + βV (k,K ′)}

s.t. c+ k′ = w(K) + (1 + r(K)− δ)k & K ′ = H(K)

• We solve using the FOC and the envelope, and find the Euler equation (household):

U ′(w(K) + (1 + r(K)− δ)k − k′︸ ︷︷ ︸
=c=gc(k,K)

) = (1+r(K ′)−δ)βU ′(w(K ′) + (1 + r(K ′)− δ)k′ − k′′︸ ︷︷ ︸
=c′=gc(k′,K′)

)

71 / 125

Production Externality: Firms

• The individual firm chooses its demand for k and l given prices and K:

max
k,l
{kαl1−αKγ − r(K)k − w(K)l}

• FOC: r(K) = αkα−1l1−αKγ & w(K) = (1− α)kαl−αKγ

• Using the FOC, we can find the individual firm’s capital and labor demand:

kj =

Å
αKγ

r(K)

ã 1
1−α

lj and lj =

Å
(1− α)Kγ

w(K)

ã 1
α

kj

72 / 125

Production Externality: Aggregate Demand

• We can find the aggregate labor demand by summing individual demands:∫ 1

0
ljdj =

∫ 1

0

Å
(1− α)Kγ

w(K)

ã 1
α

kjdj =

Å
(1− α)Kγ

w(K)

ã 1
α
∫ 1

0
kjdj︸ ︷︷ ︸

=K

= Ld(K)

• The aggregate demand for capital is the sum of individual demands:∫ 1

0
kjdj =

∫ 1

0

Å
αKγ

r(K)

ã 1
1−α

ljdj =

Å
αKγ

r(K)

ã 1
1−α

∫ 1

0
ljdj︸ ︷︷ ︸

=L(K)

= Gd(K)

73 / 125

Recursive Competitive Equilibrium: Externalities

• Definition: A recursive competitive equilibrium is a value function, V , decision rules
(policy functions) gk and gc, demand functions (Gd, Ld), price functions (r, w), and
aggregate movement law H, such that:

1. Given functions r, w, and H, the value function V is the solution to the family’s Bellman
equation with decision rules gk and gc.

2. Firms’ demands satisfy:

r(K) = αGd(K)α−1Ld(K)1−αKγ and w(K) = (1− α)Gd(K)αLd(K)−αKγ .

3. Agents’ expectations are rational (consistency):

K ′ = H(K) = gk(k,K) and C(K) = gc(k,K)

4. Markets for goods, capital, and labor are in equilibrium:

C(K) +K ′ = Gd(K)αLd(K)1−αKγ + (1− δ)K

Gd(K) = K and L(K) = 1

74 / 125

Recursive Competitive Equilibrium: Externalities

• In the competitive equilibrium, firms do not consider the externality and demand less
capital than the optimum, reducing r(K).

• A lower interest rate incentivizes less savings by households. Note the Euler Equations:

Planner U ′(C) = [1 + (α+ γ)(K ′)α+γ−1 − δ]βU ′(C ′)

Competitive Eq. U ′(C) = (1 + r(K ′)︸ ︷︷ ︸
α(K′)α+γ−1

−δ)βU ′(C ′)

• ...and the steady-state capital:

KPLAN
ss =

ï
(α+ γ)/

Å
1

β
− (1− δ)

ãò 1
1−α−γ

and KRCE
ss =

ï
α/

Å
1

β
− (1− δ)

ãò 1
1−α−γ

• The planner internalizes the externality and accumulates more capital.

75 / 125

Markov Chains

76 / 125

Uncertainty in Dynamic Programming

• Up to the present moment, we have not specified the structure of uncertainty: in principle,
an event may depend on the entire history of previous events.

• In macroeconomics, uncertainty will be essentially modelled as Markov Chains and
first-order linear difference equations (e.g., an AR(1)).

• In other words, we will ignore the history and focus only on the last realization.

• But nothing prevents us from specifying more general stochastic processes!

77 / 125

Markov Chains

• Definition: Let xt ∈ X, where X = x1, x2, ..., xn is a finite set of values. A Stationary
Markov Chain is a stochastic process {xt}∞t=0 defined by X, a transition matrix Pn×n, and
an initial probability distribution π0 (a 1× n vector) for x0.

• Markovian Property: A stochastic process {x} possesses the Markovian Property if for
every k ≥ 1 and every t: Prob(xt+1|xt, xt−1, ..., xt−k) = Prob(xt+1|xt).

• The elements of Pn×n represent the probabilities: Pij = Prob(xt+1 = xj |xt = xi).

P =

P11 P12 . . .
...

. . .

Pn1 Pnn

• For every i:

∑n
j=1 Pij = 1.

78 / 125

Markov Chains

• The transition matrix defines the probabilities of moving from state i to state j in one
period.

• The probability of transitioning from one state to another in two periods: P 2.

Prob(xt+2 = xj |xt = xi) =

n∑
k=1

PikPkj ≡ P
(2)
ij ,

where P
(2)
ij is the (i, j) element of P 2.

• Given the vector π0, π1 is the unconditional probability of x1: π1 = π0P .

• Similarly: π2 = π0P
2, πt = π0P

t, and πt+1 = πtP

79 / 125

Markov Chains

• Definition: An invariant unconditional distribution for P is a probability vector π such
that π = πP .

• Thus, an invariant distribution satisfies:

πI = πP,

πI − πP = π[I − P] = 0.

That is, π is an eigenvector of P (normalized
∑n

i=1 πi = 1), with a unit eigenvalue.

• The fact that P has non-negative elements and rows that sum to one ensures that P has
at least one eigenvector and eigenvalue.

• However, the invariant distribution is not necessarily unique.

80 / 125

Example: Unemployment-Employment

• Suppose a two states MC: first state represents the worker is employed, while the second
unemployment.

• The probability that an employed worker separate is s, while the probability of an
unemployed find a job is f .

P =

ï
1− s s
f 1− f

ò
• Let the stationary distribution π = [1− uss, uss], where uss is the SS unemployment.

• The uss satisfies the following equation:

uss = s(1− uss) + (1− f)uss ⇔ uss =
s

s+ f

81 / 125

Example: Stationary Distribution is Not Unique

• Example:

P =

 1 0 0
0.2 0.5 0.3
0 0 1

• The matrix P has two unit eigenvalues associated with the invariant distributions

π = [1 0 0] and π = [0 0 1].

• Note that any initial distribution with zero mass on the second state is an invariant
distribution.

• States 1 and 3 are absorbing states since once you enter them, you will never leave.

82 / 125

Markov Chains

• Let π∞ be the unique vector that satisfies π∞ = π∞P and, for all initial distributions π0:

lim
t→∞

π0P
t = π∞

• Then we can say that the Markov Chain is asymptotically stationary with a unique
invariant distribution.

• Theorem 1: Let P be a transition matrix with Pij > 0 ∀(i, j). Then P has a unique
invariant distribution, and the Markov Chain is asymptotically stationary.

• Theorem: 2 Let P be a transition matrix with Pn
ij > 0 ∀(i, j), for some n ≥ 1. Then P

has a unique invariant distribution, and the Markov Chain is asymptotically stationary.

• Intuitively, it must be possible to go from one state to another in one (Theorem 1) or n
steps (Theorem 2).

83 / 125

Example: SIRD Model

• During COVID the SIRD model was pretty popular. It represents 4 states of a MC:
▶ Susceptible, Infectious, Recovered, Death (in order).

P =

S
I
R
D

0.9 0.1 0 0
0 0.5 0.4 0.1
0 0 1 0
0 0 0 1

• Suppose all the population start at “Susceptible”: π0 = [1 0 0 0].

• Eventually, everybody will be at the some convex combination of the last two states

• We call the last two states “absorbing states” and the first two “transient states”.

84 / 125

Example: SIRD Model

• Suppose we have an additional (last) state called “zombie”: with certain probability
someone dead can come back as zombie. The zombies may die again.

P =

S
I
R
D
Z

0.9 0.1 0 0 0
0 0.5 0.4 0.1 0
0 0 1 0 0
0 0 0 0.5 0.5
0 0 0 0.5 0.5

• Part of the (dead) population will be in a eternal loop in the last two states. This is called

“ergodic set”.

• The markov chain is said to be ergodic if all states are ergodic.

85 / 125

Stochastic Dynamic Programming

86 / 125

Stochastic Dynamic Programming

• The main advantage of dynamic programming appears when we introduce uncertainty.

• When we represent the stochastic process as a Markov Chain, only the last realization is
sufficient ⇒ there is no need to write the entire history.

• The theorems are similar to the previous ones with some modifications taking into account
the stochastic process z.

▶ References: Acemoglu or SLP.

87 / 125

Stochastic Dynamic Programming: Stochastic Growth

• Suppose zt is a first-order Markov Chain with conditional density f(z′|z).
▶ The value of z contains information about the problem in period t and the expectation of

period t+ 1.

• Suppose the production function depends on z as follows: zkα.

• The Bellman equation for the neoclassical model:

V (k, z) = max
k′∈[0,zkα+(1−δ)k]

u(zkα + (1− δ)k − k′) + βE[V (k′, z′)|z],

where E[V (k′, z′)|z] =
∫
V (k′, z′)f(z′|z)dz′.

• With the policy function: k′ = g(k, z).

88 / 125

Stochastic Dynamic Programming

• FOC:

u′(zkα + (1− δ)k − k) = βE[Vk(k
′, z′)|z]

• And the envelope condition:

Vk(k
′, z′) = u′(z′k′α + (1− δ)k′ − k′′)(z′αk′α−1 + 1− δ)

• Stochastic Euler equation:

u′(c(k, z)) = βE[u′(c(k′, z′))(z′αk′α−1 + 1− δ)|z]

• Where c(k, z) is the consumption policy function.

89 / 125

Stochastic Dynamic Programming

Growth Model (Stochastic)
• Shock: z ∈ R+.
• State: z and k.
• Control: k′.
• Feasible set: k′ ∈ Γ(k, z) = [0, zkα + (1− δ)k].
• Return function: F (k, z, k′) = u(zkα + (1− δ)k − k′)

• State law of motion: (k′, z′) = h(k′, z′; z, k) = (k′, z′) (trivial).
• Bellman’s equation:

V (k, z) = max
k′∈Γ(k,z)

F (k, z, k′) + βE[V (k′, z′)|z]

90 / 125

Stochastic Dynamic Programming

General Form
• Shock: z ∈ Rn.
• State: x ∈ Rl (z(i) may or may not be included!).
• Control: y ∈ Rm.
• Feasible set: y ∈ Γ(x), Γ : Rl → Rm.
• Return function: F (x, y), F : Rl × Rm → R.
• State law of motion: x′ = h(x, y, z′), h : Rl × Rm × Rn → Rl.
• Bellman’s equation:

V (x) = max
y∈Γ(x)

F (x, y) + βE[V (h(x, y, z′)︸ ︷︷ ︸
x′

)|z]

91 / 125

Example: Consumption and Saving with Stochastic Income

• Suppose an individual (with infinite life) who consumes c, saves a, and has iid income w.
Utility follows standard assumptions.

• Budget constraint:

c+ a = w + (1 + r)a

• Bellman equation:

V (a,w) = max
c,a′

u(c) + βE[V (a′, w′)|w]

• Policy functions: consumption c(a,w) and saving a′(a,w).

92 / 125

Example: Consumption and Saving with Stochastic Income

Cash-on-hand
• Define the variable “cash-on-hand”: x ≡ a(1 + r) + w.

▶ State: x. Control: a′ (or c).
▶ Γ(x) = [−b, x]; F (x, a′) = u(x− a′).
▶ Law of motion: x′ = h(a′, w′) = a′(1 + r) + w′.

• The Bellman equation:

V (x) = max
a′∈[−b,x]

u(x− a′) + βE[V (h(a′, w′))]

• State variables reduced from (a,w) to x.

• Often reducing the number of state variables turns out to be valuable for analytical and
computational purposes (think about the curse of dimensionality).

93 / 125

Example: Consumption and Saving with Stochastic Income

• Solving the cash-on-hand problem. The FOC:

u′(x− a′) = βE[Vx(h(a
′, w′))h′(a′, w′)]

• Because the control is different than the state, we have to explicitly account for the law of
motion of the state.

• Using the envelope condition Vx = u′(x− a), we have the Euler equation:

u′(x− a′)β(1 + r)E[u′(x′ − a′′)]

94 / 125

Example: Consumption and Saving with Stochastic Income

• Euler equation:

u′(c) = β(1 + r)E[u′(c′)]

• What determines individuals’ saving rate?

• Three motives:

1. Intertemporal substitution: β vs (1 + r).
2. Consumption smoothing: desire to smooth differences in income across periods (e.g.,

retirement, expected increase in income, etc)
3. Precautionary savings: insurance against future shocks.

• The first two does not need stochastic income.

95 / 125

Example: Precautionary Saving

• Suppose only two periods (t = 0, 1), β(1 + r) = 1 and a0 = 0. With only two periods we
also have: a2 = 0.

• First, imagine there is no randomness, and w1 = w. The (deterministic) Euler equation is:

u′(w0 − a1︸ ︷︷ ︸
c0

) = u′(a1(1 + r) + w︸ ︷︷ ︸
c1

) ⇒ c0 = c1

▶ Thus, the only savings motive is if w0 is different than c0.

• Now suppose w is stochastic (an increase in risk): w = w + ε, where ε ∼ G(σ) with mean
zero and variance σ. The (stochastic) Euler equation:

u′(c0) = E[u′(c1)]
• Problem: the expected value is not necessarily equal E[u′(c1)] ̸= u′(c1). We cannot say

consumption will be the same in both periods!!!
96 / 125

Digression: Jensen’s Inequality

• A function f(x) is said to be convex if, for α ∈ [0, 1] and two points x1, x2, it satisfies:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

• Consider a random variable x that with probability p is x1 and with 1− p is x2.

▶ In this case, the expected value of x is: E[x] = px1 + (1− p)x2

▶ Using the definition of convexity: f(E[x]) ≤ E[f(x)]

• For the general cases, this is called the Jensen’s Inequality.

▶ In our case, whether E[u′(c1)] ≶ u′(c1) depends on the convexity of the marginal utility
u′(c2).

97 / 125

https://en.wikipedia.org/wiki/Jensen's_inequality

Example: Convexity of Marginal Utility

• In general, we assume utility is concave (u′′() < 0), but what we are interested in is the
second derivative of marginal utility.

▶ u′′() < 0 means marginal utility is decreasing.
▶ u′′′() > 0 means marginal utility is convex.

• If the third derivative of the utility is (strictly) increasing, marginal utility will be (strictly)
convex and:

E[u′(a1(1 + r) + w + ε︸ ︷︷ ︸
c1

)] > u′(E[a1(1 + r) + w + ε]) = u′(a1(1 + r) + w) = u′(c1)︸ ︷︷ ︸
Deterministic Mg. Utility in t = 1

• Thus, convexity of mg. utility implies that u′(c0) is higher in the stochastic EE ⇒ c0 must
be lower and savings, a1, should be higher.

98 / 125

Example: Convexity of Marginal Utility

• The extra incentive to save given by uncertainty is called precautionary saving.

• Precautionary saving in this class of models requires u′′′() > 0. This property is called
prudence.

• Which utilities satisfy this property?

▶ CRRA: u(c) = c1−σ−1
1−σ .

u′(c) = c−σ u′′(c) = −σc−(1+σ) u′′′(c) = σ(1 + σ)c−(2+σ) ✓

▶ Quadratic utility: u(c) = c− θ c2

2 .

u′(c) = 1− θc u′′(c) = −θ u′′′(c) = 0 ×

• Do not confuse risk aversion (concavity of u, or u′′(c) < 0) with prudence.
▶ You may still have precautionary savings without prudence if asset markets are incomplete!

99 / 125

Example: McCall Search Model

• Infinite time: t = 1, 2, . . . ,∞.

• Each period, the agent receives an iid wage offer w from a c.d.f F (w) with support [0, ω].

• Decision:
▶ If accept (A): receives w in the current period and forever (no dismissal).
▶ If reject (R): receives b ∈ (0, ω) in the current period and receives a new offer in the next

period.

• Linear utility and β ∈ (0, 1): the agent maximizes: E0[
∑∞

t=0 yt], where yt is equal to b or
w.

• Bellman equation:
▶ Accept (A): V A(w) =

∑∞
t=0 β

tw = w
1−β ,

▶ Reject (R): V R(w) = b+ βE[V (w′)] = b+ β
∫ ω

0
V (w′)f(w′)dw′.

▶ V (w) = max{V A(w), V R(w)}.

100 / 125

Example: McCall Search Model

• Solution: find the reservation wage w∗

g(w) =

ß
A if w ≥ w∗,
R if w < w∗.

(41)

• Characterized by the indifference condition:

V A(w∗) = V R(w∗)←→ w∗

1− β
= b+ β

∫ ω

0
V (w′)f(w′)dw′ (42)

• Exercise: show that

w∗ − b =
β

1− β

∫ ω

w∗
w′ − w∗f(w′)dw′, (43)

LHS: opportunity cost of rejecting the offer w∗. RHS: expected benefit of searching once
more (option value).

• Show that w∗ is increasing in b (hint: use the implicit function theorem).
101 / 125

Example: Firm with Exit Decision

• Suppose a firm with production function: y = f(z, n) = znα and α < 1, where n is the
number of hired workers, and z is productivity.

▶ z follows a Markov chain with monotonically increasing conditional density F (z′|z).
▶ The firm hires workers in a competitive labor market for wage w, and sells the final good for

p = 1.

• Every period, before knowing the realization of z, the firm decides whether to operate or
exit the market.

▶ If it decides to operate, it has to pay the fixed cost wcf . If it decides to exit the market, it
pays zero, but cannot operate again ever.

▶ The firm discounts future profits by β.

• Write the firm’s value function. What are the control(s), state(s), and return function?
What can we say about the firm’s exit decision and its productivity?

102 / 125

Example: Firm with Exit Decision

• Note that the per-period profit of a firm with productivity z is given by:

π(z; p, w) = max
n
{pznα − wn− wcf} ⇒ nd(z; p, w) =

(αpz
w

) 1
1−α

and the profit is:

π(z; p, w) = (1− α)(pz)
1

1−α

(α

w

) α
1−α − cf .

▶ Suppose that for cf > 0, s.t. there exists a z such that π = 0.

• Knowing z, the profit is given. The firm’s only decision is to exit (or not) the market:

V (z) = π(z; p, w) + βmax
{∫

V (z′)dF (z′|z), 0
}

103 / 125

Example: Firm with Exit Decision

• Given that profit is increasing in z and F is monotonic, the value function is increasing in
z.

• There exists a cut-off z̃ such that, for all z < z̃, the firm decides to exit.

• We can find the cut-off by equating the expected value of the firm with its exit value:

E[V (z′)|z̃] =
∫

V (z′)dF (z′|z̃) = 0

• This does NOT mean that the firm will never have negative profit. It may have negative
profit for some periods, if it expects a mean reversion of its z in the future.

104 / 125

Example: Value Function Iteration

• To solve the function on the computer, we will use the same method as before: iterate the
value function with grid search for maximization.

• The only key change is how to deal with the Markov process.

• If it’s discrete, we don’t need to do anything!

• If it’s continuous, we need to use some discretization method:
▶ The most well-known ones (applied to an AR(1)): Tauchen and Rouwenhorst.

• There are alternative ways to compute a conditional expectation on the computer.
▶ Remember that expectation is basically an integral → computing an expectation is

computing an integral numerically.

• Example: Stochastic Growth Model (with δ = 1).

105 / 125

Value Function Iteration

1. Discretize k into a vector with nk points between K and K. Define the points on the grid
as {K1,K2, ...,KI}.

2. Discretize z as a Markov process with nz points. This implies a vector of values for
{Z1, Z2, ..., Znz} and a transition matrix Pnz×nz .

3. The value function will be stored in a matrix nk×nz: {Vij}. Initialize the matrix with your
“guess’ V 0 (each point of Vij is the value associated with capital ki and productivity zj).

4. Compute the expectation of the value function (E[Vij] = V P ′):

 V11 V12 . . . V1nz

...
. . .

. . .

Vnk1 Vnknz

︸ ︷︷ ︸

Vnk×nz

×

 P11 P21 . . . Pnz1

P12
. . .

. . .

P1nz Pnznz

︸ ︷︷ ︸

P ′
nz×nz

=

 E[V11] E[V12] . . . E[V1nz]
...

. . .
. . .

E[Vnk1] E[Vnknz]

︸ ︷︷ ︸

E[V]

Note that E[Vij] =
∑nz

m PjmVim (conditional expectation at j).
106 / 125

Value Function Iteration

• The rest is standard:

• Compute V n+1
ij using the procedure for every i and j (grid search or brute force):

V n+1
ij,l =

®
u(zjf(ki)− kl) + βEV n

lj , if zjf(ki)− kl = cij,l > 0

−∞, if zjf(ki)− kl = cij,l ≤ 0

V n+1
ij =max{V n+1

ij,1 , V n+1
ij,2 , ..., V n+1

ij,nK
}

• Calculate d = maxi, j |V n+1
ij − V n

ij |. If d < ε, we have found the value function Vn+1 = V .
Otherwise, update the guess, Vn = Vn+1, and return to the previous point.

107 / 125

Continuous Time Dynamic Programming:
The Hamilton-Jacobi-Bellman Equation

108 / 125

Dynamic Programming

• Just like in discrete time, we can represent the problem using Dynamic Programming.

• A more flexible approach, especially for introducing uncertainty, discrete choice, etc.

• Same solution but we have to solve a partial differential equation instead of an ordinary
differential equation.

• Easier to bring the problem to the computer (we won’t cover numerical methods).

109 / 125

Bellman’s Principle

• How to find the value function in continuous time?

• Consider Bellman’s principle of optimality to obtain the value function V (t−∆t, a):

V (t−∆t, a) =max
c>0
{u(c)∆t+ e−ρ∆tV (t, a′)}

s.t. a′ = a+ (ra+ w − c)∆t

▶ u(c)∆t: utility flow between periods t−∆t and t.
▶ e−ρ∆tV (t, a′): continuation value.
▶ (ra+ w − c)∆t: income and consumption flow.

• Rewrite the equation:

V (t−∆t, a) =max
c>0
{u(c)∆t+ e−ρ∆tV (t, a+ (ra+ w − c)∆t)}

110 / 125

Hamilton-Jacobi-Bellman Equation

• Define g(∆t) ≡ e−ρ∆V (t, a+ [ra+ w − c]∆t) and take the Taylor expansion around the
point ∆t = 0:

g(∆t) =g(0) + g′(0)∆t+ o(∆)

g(∆t) ≈V (t, a) + (−ρV (t, a) + Va(t, a)ȧ)∆t

where Va(t, a) is the derivative with respect to a.

• The value function:

V (t−∆t, a) =max
c>0
{u(c)∆t+ V (t, a) + (−ρV (t, a) + Va(t, a)ȧ)∆t}

111 / 125

Hamilton-Jacobi-Bellman Equation

• Continuing:

V (t−∆t, a) =max
c>0
{u(c)∆t+ V (t, a) + (−ρV (t, a) + Va(t, a)ȧ)∆t}

V (t−∆t, a)− V (t, a)

∆t
=max

c>0
{u(c)− ρV (t, a) + Va(t, a)ȧ}

• Taking the limit ∆t→ 0 and we find the Hamilton-Jacobi-Bellman Equation:

−Vt(t, a) + ρV (t, a) =max
c>0
{u(c) + (ra+ w − c)Va(t, a)}

112 / 125

Hamilton-Jacobi-Bellman Equation

Hamilton-Jacobi-Bellman Equation:

−Vt(t, a) + ρV (t, a) =max
c>0
{u(c) + (ra+ w − c)Va(t, a)}

• Partial differential equation (Vt(t, a)).

• Assumption: V is differentiable in all its arguments.

• Intuition: Va(t, a) represents the marginal increase in value when wealth a increases
marginally → note the connection with the multiplier µ!

• If the problem is stationary (variables constant over time): Vt(t, a) = 0 and value function
does not depend on time.

113 / 125

Hamilton-Jacobi-Bellman Equation

• We are interested in solving the problem. Necessary condition (FOC w.r.t c):

u′(c∗(t, a)) = Va(t, a)

• And the envelope condition. Differentiating the HJB w.r.t a (evaluated at the optimum
c∗(t, a)):

−Vta(t, a) + ρVa(t, a) =
∂c∗(t, a)

∂a

(
u′(c∗(t, a))− Va(t, a)

)︸ ︷︷ ︸
=0 (by FOC)

+...

...(ra+ w − c∗(t, a))Vaa(t, a) + rVa(t, a)

114 / 125

Hamilton-Jacobi-Bellman Equation

• Finally:

Vta(t, a) + ȧVaa(t, a) = −(r − ρ)Va(t, a)

• Define the optimal solution for a∗(t) using the motion law and c∗(t, a):

ȧ∗(t) = ra+ w − c∗(t, a)

• Thus:

dVa(t, a
∗(t))

dt
= Vta(t, a

∗(t)) + ȧ∗(t)Vaa(t, a
∗(t))

• Note that Vt(t, a) is the partial derivative with respect to the first argument and
dV (t, a)/dt is the total derivative (potentially the second argument depends on t).

115 / 125

Hamilton-Jacobi-Bellman Equation

• Using FOC, and the envelope condition evaluated at the optimum a∗(t):

d
dtVa(t, a

∗(t))

Va(t, a∗(t)
=− (r − ρ)

d
dtu

′(ct)

u′(ct)
=− (r − ρ)

u′′(ct)ċt
u′(ct)

=− (r − ρ)

• Finally we find the same Euler Equation!

116 / 125

A note about uncertainty in continuous time

117 / 125

Uncertainty

• Let’s consider the simplest process in continuous time: Poisson processes (jump
processes).

▶ General cases require an introduction to stochastic calculus.

• Consider wt following a Poisson process with states: {w1, w2}

• The transition rate between state i and j is given by: ηij ≥ 0.

• The conditional probability of "jumping"from state 1 to state 2 in the interval ∆t

P (jump to w2 in interval [t, t+∆t]|wt = w1) = 1− e−η12∆t ≈ η12∆t+ o(∆t)

where the approximation is valid for a ∆t close to zero.

118 / 125

Uncertainty

• For N states w ∈ {w1, ..., wN} with small ∆t:

P (jump to wj in interval [t, t+∆t]|wt = wi) ≈ ηij∆t+ o(∆t)

P (stay in w1 in interval [t, t+∆t]|wt = wi) ≈

Ñ
1−

∑
j ̸=i

ηij∆t+ o(∆t)

é
• Probability of 2 jumps in the same interval is second order and disappears quickly as
∆t→ 0

P (2 or + jumps: i→ k → j in [t, t+∆t]|wt = wi) ≈ ηji∆t× ηkj∆t = ηjiηji(∆t)2

119 / 125

Consumption and Savings

• Consider the consumption and savings problem with w ∈ {w1, w2} and η12 = η21 = η:

V (t−∆t, a, w1) =max
c>0
{u(c)∆t+ e−ρ∆t

[
(1− η∆t)V (t, a′, w1) + η∆tV (t, a′, w2)

]
}

with a′ = a+ (ra+ w1 − c)∆t.

• (1− η∆t)V (t, a′, w1) continuation value when w does not change

• η∆tV (t, a′, w2) continuation value when w1 → w2.

120 / 125

Consumption and Savings

• Differentiate with respect to ∆t and evaluate ∆t = 0 (the result will be the same if we use
the Taylor series as before):

∂V (t−∆t, a, w1)

∂∆t

∣∣∣
∆t=0

= −Vt(t, a, w1) =

= max
c>0
{u(c) + ȧVa(t, a, w1)︸ ︷︷ ︸

Additional Savings

} − ρV (t, a, w1) + η(V (t, a, w2)− V (t, a, w1)︸ ︷︷ ︸
Wage Differential

)

Note that the effect of saving in state w2 is second order.

• The solution satisfies the two symmetric HJBs:

−Vt(t, a, w1) + (ρ+ η)V (t, a, w1) = max
c>0
{u(c)− [ar + w1 − c]Va(t, a, w1)}+ ηV (t, a, w2)

−Vt(t, a, w2) + (ρ+ η)V (t, a, w2) = max
c>0
{u(c)− [ar + w2 − c]Va(t, a, w2)}+ ηV (t, a, w1)

121 / 125

Consumption and Savings

• To find the Euler Equation we use the same idea as before. Suppose the problem is
stationary. The FOC of c implies:

u′(c∗(a,w)) =Va

• The envelope condition (∂HJB/∂a):

ρVa(a,w) = η(Va(a, w̃)− Va(a,w)) + rV (a,w) + ȧVaa(a,w)

• Ok, in discrete time we know that our EE is about the expected value of the marginal
utility of t+ 1 (i.e. E[u′(ct+1)]).

• What is the appropriate definition of this expected value in continuous time?

122 / 125

Consumption and Savings

• Definition. For the differentiable function f , define the Infinitesimal Generator as the
operator A:

Af(a,w) = lim
∆t→0

Et[f(at+∆t, wt+∆t)]− f(at, wt)

∆t

• Intuition: The Infinitesimal Generator describes how the stochastic process evolves over a
time interval.

• Our stochastic process depends on two variables: a∗t and wt. Basically A tells us how the
function f evolves in expected value given a∗t and wt for an instant t.

123 / 125

Consumption and Savings

• In our case:

Et[f(a
∗
t+∆t, wt+∆t)] ≈ (1− η∆t)f(a∗t + ȧ, wt) + η∆tf(a∗t + ȧ, w̃t)

• It is relatively easy to use the definition and demonstrate that:

Af(a∗, w) = ȧfa(a,w)︸ ︷︷ ︸
Drift in a

+ η(f(a∗, w̃)− f(a∗, w))︸ ︷︷ ︸
Wage transition

.

• The envelope condition can be written:

ȧVaa(a,w) + η(Va(a, w̃)− Va(a,w))︸ ︷︷ ︸
AVa(a,w)

= −(r − ρ)Va(a,w)

124 / 125

Consumption and Savings

• Combining the FOC with the envelope:

AVa(a
∗, w)

Va(a∗, w)
=− (r − ρ)

Au′(c∗(a,w))
u′(c∗(a,w))

=− (r − ρ)

• Finally we find the Euler Equation!

• Where
Au′(c∗)
u′(c∗)

is the expected growth rate of u′.

125 / 125

