International Economics I
 Increasing Returns to Scale (The Krugman Model)

Tomás Rodríguez Martínez

Universitat Pompeu Fabra and BGSE

Introduction

- In the early neoclassical frameworks, there is trade when there is comparative advantage.
- Trade exists because countries are different.
- e.g. differences in technology or factor endowments...
- Very useful to explain inter-industry and trade between "North" and "South.
- However, in the data:
- most of trade is between countries that are very similar (developed countries)
- tons of Intra-industry trade.

Introduction

- To account for these empirical regularities we must have additional reasons to trade \Rightarrow Increasing returns to scale (IRS)!
- Access to international markets allows to increase production and decrease costs.
- Many economists already recognized this idea but they could not formalize it well \Rightarrow increasing returns to scale does not mix well with perfect competition.
- The development of formal models of monopolistic competition in the 70's (Dixit and Stiglitz, 1977 among others) help them to study IRS more rigorously.
- Led to the development of the New Trade Theory.

Introduction

- The New Trade Theory was developed by Krugman, Helpman, Grossman among others in the late 70's and early 80's.
- Paul Krugman received the Nobel Prize in 2008 for this theory.
- The NTT relies on increase returns to scale at the firm level (combined with monopolistic competition).
- Some goods are only viable in large scale (because of large fixed costs).
- Requires specialization to take advantage of large-scale production.
- It allow us to consider:
- Intra-industry trade (each country imports and exports different varieties of the same good).
- Trade between similar contries (e.g., North-North).

Introduction

Modeling Increasing Returns to Scale

- External Economies of Scale \Rightarrow Decreasing in cost depends on the size of the industry (because specialized supplies, workers, etc) \rightarrow many small firms.
- Internal Economies of Scale \Rightarrow Decreasing in cost depends on the size of the firm \rightarrow few large firms producing differentiated products.
- e.g. Amazon has a large fixed cost and is only able to sell its product if it serves a large market.

IRS and Differentiated Goods: Intuition

- Consider differentiated goods within a sector:
- e.g., iPhone and Galaxy S are 2 varieties perceived as imperfect substitutes
- Internal economies of scale imply:
- Each variety is cheaper if production is concentrated in one large firm
- Apple is located in one country (US) and Samsung possibly in another (Korea)
- In both countries, some prefer Apple and some Samsung
- Trade allows both varieties to be sold in both countries
- Gains:
- Americans (Koreans) preferring Samsung (Apple) are happier.
- "competition" with foreign variety reduces the price of both.

Introduction

- IRS and differentiated good: new gains from trade!
- with trade we have:
(i) More "varieties" to choose.
(ii) Larger markets (i.e. more countries to sell) reduce costs.
(iii) Pro-competitive gains: more competition (from abroad) reduces prices if firms have some monopolistic power.
- We will study a model based on Krugman $(1980,1979)$ to understand these new gains from trade.

Outline

1. Increasing Returns and Monopolistic Competition
2. Open Economy

Pro-Competitive GFT
4. Empirical Evidence

Increasing Returns: A Problem

- Assume production requires:
- fixed input of F units of labor (building a plant or designing a product)
- variable input of β units of labor per unit of output
- total cost of producing q units:

$$
T C(q)=(F+\beta q) w
$$

$\star w=$ wage; $F w=$ fixed cost; $\beta w=$ marginal cost $(M C)$

- take wage as the numeraire $(w=1)$
* average production cost decreasing in q

$$
A C=F / q+\beta
$$

- Perfect competition requires price $=\mathrm{MC}: p=\beta$
- Profits: $\pi(q)=p q-F-\beta q=\beta q-F-\beta q=-F$
- Firms selling at $M C$ make losses \Rightarrow no firm wants to produce.

Non-competitive Market

If not competitive, what market structure?

- Monopoly: aggressive hypothesis, only realistic in very specific markets.
- Oligopoly: interesting, but it involves complicated modeling strategic interactions between firms (How? Game theory?).
- e.g. Coca-cola vs Pepsi: one makes the decision considering the other.
- Monopolistic competition:
- Monopoly pricing: firms choose price given demand curve.
- Each firm produces a individual variety of the same good: they have market power over that variety.
- No strategic interactions (many firms): although demand for every variety depends on all prices, each individual firm is atomistic and ignore the decision of the others.

Differentiated Goods + Monopolistic Competition

- assume n firms in the economy (we can also interpret as a "sector").
- each firm produces a different variety of the same good
- varieties are imperfect substitutes
* consumers are willing to pay more to have them all
- each firm has market power over its variety (monopoly)
- each firm chooses price to maximize profit
- taking the demand for its variety as given (as in monopoly)
- without considering the effect of its price on market conditions (as in perfect competition)

Preferences and Demand

- consider a country with L agents (work \& consume)
- consumers draw utility from the n varieties

$$
U=\sum_{i=1}^{n} c_{i}^{\alpha} \quad \alpha \in(0,1)
$$

- love of variety: consumers are happier the more varieties they have
* assume consumption of each variety $c_{i}=c=C / n$ (equal shares of total consumption)
* then $U=n(C / n)^{\alpha}=C^{\alpha} n^{1-\alpha}$, increasing in n since $\alpha \in(0,1)$
- individual demand of each variety i is the solution to

$$
\begin{aligned}
& \max _{c_{i}} \sum_{i=1}^{n} c_{i}^{\alpha} \\
& \text { s.t. } w \geq \sum_{i=1}^{n} p_{i} c_{i}
\end{aligned}
$$

- $w=$ income, $p_{i}=$ price of i

The Model: Demand

- to obtain demand, set the Lagrangean

$$
\mathcal{L}=\sum_{i=1}^{n} c_{i}^{\alpha}-\lambda\left(\sum_{i=1}^{n} p_{i} c_{i}-w\right)
$$

- the f.o.c. for c_{i} requires that for all i

$$
\alpha c_{i}^{\alpha-1}=\lambda p_{i}
$$

- demand of variety i relative to j is

$$
\frac{c_{i}}{c_{j}}=\left(\frac{p_{i}}{p_{j}}\right)^{-\frac{1}{1-\alpha}}
$$

- demand for each variety i is

$$
c_{i}=\frac{w}{P}\left(\frac{P}{p_{i}}\right)^{\frac{1}{1-\alpha}}
$$

$$
\star P=\left[\sum_{i=1}^{n} p_{i}^{-\alpha /(1-\alpha)}\right]^{-(1-\alpha) / \alpha} \text { is the price index (note: } P \text { decreasing in } n \text {) }
$$

The Model: Demand

- demand for each variety i is

$$
c_{i}=\frac{w}{P}\left(\frac{P}{p_{i}}\right)^{\frac{1}{1-\alpha}}
$$

- is increasing in the real wage $\uparrow w / P \Rightarrow \uparrow c_{i}$.
- decreasing in its price: $\downarrow p_{i} \Rightarrow \uparrow c_{i}$
- increasing in the price index: $\uparrow P \Rightarrow \uparrow c_{i}$. Intuitively, if the price of "other" varieties increase you substitute for the variety i.
- What is the price index? Think about the price weighted average of the consumption implied by the utility function.
- $P=\left[\sum_{i=1}^{n} p_{i}^{-\alpha /(1-\alpha)}\right]^{-(1-\alpha) / \alpha}$
- $\uparrow n \Rightarrow \downarrow P \Rightarrow \downarrow c_{i}$: more goods, the consumers "split" demand between them.

The Model: Demand

- the price-elasticy of demand is

$$
\epsilon_{p}=\frac{\% \Delta c_{i}}{\% \Delta p_{i}}=-\frac{\partial \ln c_{i}}{\partial \ln p_{i}}=\frac{1}{1-\alpha}
$$

ϵ_{p} is increasing in α

- the elasticity of substitution between any two varieties is

$$
\epsilon_{i j}=\frac{\% \Delta\left(c_{i} / c_{j}\right)}{\% \Delta\left(p_{i} / p_{j}\right)}=-\frac{\partial \ln \left(c_{i} / c_{j}\right)}{\partial \ln \left(p_{i} / p_{j}\right)}=\frac{1}{1-\alpha}
$$

$\epsilon_{i j}$ is increasing in α

- we interpret α as the substitutability between varieties
- if $\uparrow \alpha \Rightarrow \uparrow \epsilon_{i j}$: you are willing to substitute more between varieties.

The Model: Firms and Prices

- All firms have the same technology (i.e. fixed cost F and marginal cost β).
- They have monopoly over one variety.
- Firm producing variety i chooses its quantity (or alternatively its price) so as to
- maximize profit π_{i}, given aggregate demand for their variety $q_{i}=L c_{i}$ and $w=1$.

$$
\begin{array}{ll}
& \max _{q_{i}}\left[\pi_{i}=p_{i} q_{i}-\left(F+\beta q_{i}\right) w\right] \\
\text { s.t. } & q_{i}=\left(P / p_{i}\right)^{1 /(1-\alpha)} L / P \Leftrightarrow p_{i}=\left(L / q_{i}\right)^{(1-\alpha)} P^{\alpha}
\end{array}
$$

- Monopoly \Rightarrow it does not matter if we maximize over price or quantity.
- The f.o.c. requires that Mg . Revenue $=\mathrm{Mg}$. cost:

$$
\operatorname{MgR} .=p_{i}+\frac{\partial p_{i}}{\partial q_{i}} q_{i}=\beta=\mathrm{Mg} . \mathrm{C}
$$

Monopolistic Competition

Monopolistic Competition

The Model: Firms and Prices

- differentiate p_{i} with respect to q_{i} and using the aggregate demand to obtain

$$
\begin{aligned}
p_{i}+\frac{\partial p_{i}}{\partial q_{i}} q_{i} & =p_{i}-(1-\alpha) \underbrace{\left(\frac{L}{q_{i}}\right)^{(1-\alpha)} P^{\alpha}}_{=p_{i}}=\beta \\
& \Rightarrow p_{i}-(1-\alpha) p_{i}=\beta
\end{aligned}
$$

hence

$$
p_{i}=\frac{\beta}{\alpha} \quad \text { and } \quad q_{i}=\left(\frac{P \alpha}{\beta}\right)^{1 /(1-\alpha)} \frac{L}{P}
$$

Monopolistic Competition Pricing and Scale

- p_{i} equals perfect-competition price * mark-up

$$
p_{i}=\underbrace{\beta}_{\text {marginal cost }} \times \underbrace{\frac{1}{\alpha}}_{\text {mark-up }}>\beta
$$

- higher elasticity of substitution $(\alpha \uparrow)$:
* firms have less market power
\star firms can charge lower mark-up \rightarrow lower price $(\alpha \uparrow \rightarrow p \downarrow)$
- same technology $($ same β) + isoelastic demand (constant elasticity, same α) implies
- same price $\left(p_{i}=p\right)$
- same scale $\left(q_{i}=q=(P / p)^{1 /(1-\alpha)} L / P\right)$

Monopolistic Competition: Free Entry

- all firms have the same scale and prices, hence substituting q and p in profits

$$
\pi=p q-F-\beta q=A \beta^{-\frac{\alpha}{1-\alpha}}-F
$$

with $A \equiv(1-\alpha) L(\alpha P)^{\alpha /(1-\alpha)}$

- profit decreasing in marginal and fixed cost β and F
- profit increasing in mkt size L and price index P
- re-write profit as

$$
\pi=\left(\frac{\beta}{\alpha}-\beta\right) q-F=0
$$

- new firms (i.e., varieties) enter the sector as long as $\pi>0$
- in equilibrium, entry drives profit to zero, $\pi=0 \rightarrow$ obtain scale of production q

$$
q=\frac{\alpha}{1-\alpha} \frac{F}{\beta}
$$

Equilibrium Varieties

- to obtain the equilibrium number of varieties, n, impose labor market clearing:
- supply $=L$ workers
- demand = workers needed in overall production (fixed+variable)

$$
L=(F+\beta q) n=F\left(1+\frac{\alpha}{1-\alpha}\right) n
$$

- hence

$$
n=\frac{L}{F}(1-\alpha)
$$

- larger economies produce more varieties ($L \uparrow \rightarrow n \uparrow$)
- the higher the fixed cost the fewer varieties ($F \uparrow \rightarrow n \downarrow$)
- the higher the elasticity of substitution the fewer varieties $(\alpha \uparrow \rightarrow n \downarrow)$

Equilibrium: Summary

- Optimality conditions of consumers and firms:

$$
c_{i}=\frac{w}{P}\left(\frac{P}{p_{i}}\right)^{\frac{1}{1-\alpha}}=c \quad \text { and } \quad p_{i}=\frac{\beta}{\alpha}=p
$$

- Free entry $(\pi=0)$:

$$
(p-\beta) q-F=0 \Rightarrow q=\frac{\alpha}{1-\alpha} \frac{F}{\beta}
$$

- Goods and labor market clearing:

$$
q_{i}=q=L \times c_{i} \quad \text { and } \quad L=n(F+\beta q)
$$

Equilibrium

- Combining $L=n(F+\beta q)$ with $(p-\beta) q=F$:
$\rightarrow p=\beta L /(L-F n)$
- There are other ways to express eq., Krugman (1979) plots p on c.

Outline

1. Increasing Returns and Monopolistic Competition

2. Open Economy
3. Pro-Competitive GFT
4. Empirical Evidence

Equilibrium in Open Economy

- Consider 2 countries:
- same technology (F, β) and preferences (α)
\star all firms charge the same price $\left(p=p^{*}\right)$
\star and produce the same quantities $\left(q=q^{*}\right)$
- possibly different country size $\left(L \neq L^{*}\right)$
* different number of varieties

$$
n=\frac{L}{F}(1-\alpha) \neq \frac{L^{*}}{F}(1-\alpha)=n^{*}
$$

- In the usual neoclassical model: no comparative advantage \Rightarrow no reasons for trade!
- Where are the gains for trade?

Gains From Trade

- Note that utility is increasing in n :

$$
U=\sum_{i=1}^{n} c_{i}^{\alpha}=\sum_{i=1}^{n}\left(\frac{q}{L}\right)^{\alpha}=n\left(\frac{q}{L}\right)^{\alpha}
$$

- where we used the fact that

$$
q_{i}=q=c_{i} L \Rightarrow c_{i}=\left(\frac{q}{L}\right)
$$

- when we open to trade the variety i is consumed in both countries (firm has to produce to serve both countries \Rightarrow large scale!)

$$
q_{i}=q=c_{i}\left(L+L^{*}\right) \Rightarrow c_{i}=\left(\frac{q}{L+L^{*}}\right)
$$

- number of available variety increases: $n+n^{*}$

Gains From Trade

- consumers in both countries can consume more varieties $\left(n+n^{*}\right)$
- utility in autarky and free trade

$$
U_{A}=n\left(\frac{q}{L}\right)^{\alpha} \quad \text { and } \quad U_{F T}=\left(n+n^{*}\right)\left(\frac{q}{L+L^{*}}\right)^{\alpha}
$$

- GFT: utility is higher under free trade

$$
\frac{U_{F T}}{U_{A}}=\frac{n+n^{*}}{n}\left(\frac{L}{L+L^{*}}\right)^{\alpha}=\left(\frac{L+L^{*}}{L}\right)^{1-\alpha}>1
$$

- new type of GFT: gains from variety
- gains are lower if varieties are better substitutes $\left(\alpha \uparrow \rightarrow U_{F T} / U_{A} \downarrow\right)$
- gains are higher for smaller countries

$$
\star \text { if } L^{*}>L \rightarrow\left(L+L^{*}\right) / L>\left(L+L^{*}\right) / L^{*}
$$

Pattern of Trade

- each country exports its varieties and imports the foreign ones

$$
X=\frac{L^{*}}{L^{*}+L} n q \text { and } \quad M=\frac{L}{L^{*}+L} n^{*} q
$$

- nq: quantity produced at home; $L^{*} /\left(L^{*}+L\right)$: demand by foreign.
- $n^{*} q$: quantity produced by foreign; $L /\left(L^{*}+L\right)$: demand by home.
- all firms in both countries are exporters
- trade is intra-industry trade
- export and import same good (different varieties)

Outline

1. Increasing Returns and Monopolistic Competition

2. Open Economy
3. Pro-Competitive GFT

4. Empirical Evidence

Extension: Pro-Competitive GFT

- Another possible gain: More firms in the market decrease market power of monopolistics.
- $\uparrow n$ decreases mark-up $\downarrow 1 / \alpha$
- assume that α is increasing in $n: \alpha(n) \Rightarrow$ changes in n affect prices! $p=\beta / \alpha(n)$
- smartphones become better substitutes as more varieties enter the market (e.g., HTC, Motorola, Nokia, Sony etc.)
- monopoly power erodes as n increases
- mark-ups and prices fall: $n \uparrow \rightarrow \alpha \uparrow \rightarrow p \downarrow$
- profits fall \rightarrow less entry

Extension: Pro-Competitive GFT

- Effects of trade (an increase in L):
- varieties increase by less: $n_{F T}<n_{A}, n_{F T}^{*}<n_{A}^{*}$
- less gains from variety
- but prices fall and we are able to consume more of each variable \rightarrow pro-competitive GFT!
- The decrease in variety (relative to the case without pro-competitive) happens because: lower prices \Rightarrow lower profits \Rightarrow lower entry.

Extension: Pro-Competitive GFT

Outline

1. Increasing Returns and Monopolistic Competition

2. Open Economy
3. Pro-Competitive GFT
4. Empirical Evidence

Evidence on Intra-Industry Trade (IIT)

- How to measure IIT? Grubel y Lloyd index (IIT):

$$
I I T_{j}=1-\frac{\left|e_{j}-i_{j}\right|}{e_{j}+i_{j}}
$$

- $j=$ sector (more or less disaggregated definition)
- $e=$ export of the sector
- $i=$ import of the sector
- $I I T_{j}=0$ if j only imports or exports (no IIT)
- $I I T_{j}=1$ if j imports as much as it exports (max IIT)
- If e and i very similar $\Rightarrow I I T$ is close to 1 and there is lots of intra-industry trade.
- If one of e or i very large and the other close to $0 \Rightarrow I I T \approx 0$ and no intra-industry trade.
- The IIT can be applied between two countries, or home vs rest of the world.

Intra-Industry Trade: Data

United States			
Product (SITC-2)		Germany	
Top 10 products	Grubel Lloyd Index		
	0.9980	Crude fertilizer/mineral	Grubel Lloyd Index
Metalworking machinery	0.9941	Leather manufactures	0.985
Dairy products \& eggs	0.9915	Railway/tramway equipment	0.975
Leather manufactures	0.9876	Sugar/sugar prep/honey	0.970
Power generating equipment	0.9740	Non-ferrous metals	0.966
Electrical equipment	0.9479	Meat \& preparations	0.953
Perfume/cosmetic/...	0.9405	Furniture/furnishings	0.947
Crude fertilizer/mineral	0.9393	Coffee/tea/cocoa/spices	0.946
Animal/veg oils processed	0.9186	Animal feed	0.946
Industry special machine	0.9009	Organic chemicals	0.937
Plastics non-primary form			0.935
Bottom 10 products	0.2876	Dyeing/tanning/...	
Cork/wood manufactures	0.2830	Metalworking machinery	0.55
Furniture/furnishings	0.2727	Fixed veg oils/fats	0.54
Gas natural/manufactured	0.1798	Industry special machine	0.47
Petroleum and products	0.1612	Vegetables and fruit	0.45
Travel goods/handbag/etc	0.1590	Pulp and waste paper	0.45
Hide/skin/fur, raw	0.1384	Petroleum and products	0.44
Oil seeds/oil fruits	0.1135	Gas natural/manufactured	0.40
Apparel/clothing/access	0.1110	Oil seeds/oil fruits	0.24
Footwear	0.0789	Coal/coke/briquettes	0.18
Manufactured fertilizers			0.13

IIT higher for differentiated and high-tech goods

Horizontal vs Vertical IIT

- the IIT index has 2 potential limitations
- the less disaggregated the sectors, the higher IIT
- IIT does not distinguish between intermediates (engines) and final goods (cars) within a sector
- solution: 2 indexes computed on super-disaggregated data
- "vertical" IIT: intermediate goods imported and exported in the same industry
- "horizontal" IIT: similar final goods imported and exported in the same industry
- both IIT predominant between similar (advanced) countries
- unidirectional trade predominant between different countries (North-South)

Intra-Industry Trade: Data

- share of German trade with its partners

Partner	Horizontal	Partner	Vertical	Partner	One way
United Kingdom	0.56	Malaysia	0.49	Bangladesh	1.00
Switzerland	0.53	Italy	0.41	Zimbabwe	0.99
France	0.52	Spain	0.39	Madagascar	0.98
Austria	0.51	Belgium	0.38	Algeria	0.98
Netherlands	0.49	Portugal	0.37	Nigeria	0.97
Denmark	0.49	Netherlands	0.37	Macao, China	0.97
Czech Republic	0.47	France	0.36	Panama	0.97
US	0.47	Slovenia	0.35	FYROM	0.97
Belgium	0.45	Sri Lanka	0.34	Iran	0.96
Singapore	0.44	Hong Kong, China	0.34	Ghana	0.96

Intra-Industry Trade and Similarity

Intra-industry trade and similarity in economic size, selected trading partners, Germany, 2004 (Percent)

Summary

- IRS + differentiated goods \rightarrow monopolistic competition
- monopolist's price is decreasing in substitutability
- larger markets \rightarrow more varieties
- more varieties \rightarrow happier consumers
- efect of trade $=$ increase market size
- more varieties \rightarrow more varieties can be consumed in both countries
- gains from trade = gains from variety
- pattern of specialization and trade
- each country specializes in a number of different varieties depending on its size
- each country exports all domestic and imports all foreign varieties: intra-industry trade
- smaller countries benefit more from trade

