International Economics I Increasing Returns to Scale (The Krugman Model)

Tomás Rodríguez Martínez

Universitat Pompeu Fabra and BGSE

- In the early neoclassical frameworks, there is trade when there is comparative advantage.
 - Trade exists because countries are different.
 - e.g. differences in technology or factor endowments...
- Very useful to explain inter-industry and trade between "North" and "South.
- However, in the data:
 - most of trade is between countries that are very similar (developed countries)
 - tons of Intra-industry trade.

- To account for these empirical regularities we must have additional reasons to trade ⇒ Increasing returns to scale (IRS)!
 - Access to international markets allows to increase production and decrease costs.
- Many economists already recognized this idea but they could not formalize it well
 ⇒ increasing returns to scale does not mix well with perfect competition.
- The development of formal models of monopolistic competition in the 70's (Dixit and Stiglitz, 1977 among others) help them to study IRS more rigorously.
- Led to the development of the New Trade Theory.

- The New Trade Theory was developed by Krugman, Helpman, Grossman among others in the late 70's and early 80's.
 - ► Paul Krugman received the Nobel Prize in 2008 for this theory.
- The NTT relies on increase returns to scale at the firm level (combined with monopolistic competition).
 - ► Some goods are only viable in large scale (because of large fixed costs).
 - ► Requires specialization to take advantage of large-scale production.
- It allow us to consider:
 - Intra-industry trade (each country imports and exports different varieties of the same good).
 - ► Trade between similar contries (e.g., North-North).

Modeling Increasing Returns to Scale

- External Economies of Scale ⇒ Decreasing in cost depends on the size of the industry (because specialized supplies, workers, etc) → many small firms.
- Internal Economies of Scale ⇒ Decreasing in cost depends on the size of the firm → few large firms producing differentiated products.
 - e.g. Amazon has a large fixed cost and is only able to sell its product if it serves a large market.

IRS and Differentiated Goods: Intuition

- Consider differentiated goods within a sector:
 - ▶ e.g., iPhone and Galaxy S are 2 varieties perceived as imperfect substitutes
- Internal economies of scale imply:
 - Each variety is cheaper if production is concentrated in one large firm
 - ► Apple is located in one country (US) and Samsung possibly in another (Korea)
- In both countries, some prefer Apple and some Samsung
- Trade allows both varieties to be sold in both countries
- Gains:
 - Americans (Koreans) preferring Samsung (Apple) are happier.
 - "competition" with foreign variety reduces the price of both.

- IRS and differentiated good: new gains from trade!
- with trade we have:
 - (i) More "varieties" to choose.
 - (ii) Larger markets (i.e. more countries to sell) reduce costs.
 - (iii) Pro-competitive gains: more competition (from abroad) reduces prices if firms have some monopolistic power.
- We will study a model based on Krugman (1980, 1979) to understand these new gains from trade.

1. Increasing Returns and Monopolistic Competition

2. Open Economy

3. Pro-Competitive GFT

4. Empirical Evidence

Increasing Returns: A Problem

- Assume production requires:
 - ▶ fixed input of F units of labor (building a plant or designing a product)
 - \blacktriangleright variable input of β units of labor per unit of output
 - total cost of producing q units:

$$TC(q) = (F + \beta q) w$$

* w = wage; Fw = fixed cost; $\beta w =$ marginal cost (MC)

- ▶ take wage as the numeraire (w = 1)
 - $\star\,$ average production cost decreasing in q

$$AC = F/q + \beta$$

- Perfect competition requires price = MC: $p = \beta$
 - ▶ Profits: $\pi(q) = pq F \beta q = \beta q F \beta q = -F$
 - Firms selling at MC make losses \Rightarrow no firm wants to produce.

If not competitive, what market structure?

- Monopoly: aggressive hypothesis, only realistic in very specific markets.
- **Oligopoly**: interesting, but it involves complicated modeling strategic interactions between firms (How? Game theory?).
 - e.g. Coca-cola vs Pepsi: one makes the decision considering the other.

• Monopolistic competition:

- ► Monopoly pricing: firms choose price given demand curve.
- Each firm produces a individual variety of the same good: they have market power over that variety.
- ► No strategic interactions (many firms): although demand for every variety depends on all prices, each individual firm is atomistic and ignore the decision of the others.

Differentiated Goods + Monopolistic Competition

- assume n firms in the economy (we can also interpret as a "sector").
- each firm produces a different variety of the same good
 - varieties are imperfect substitutes
 - \star consumers are willing to pay more to have them all
 - each firm has market power over its variety (monopoly)
- each firm chooses price to maximize profit
 - taking the demand for its variety as given (as in monopoly)
 - without considering the effect of its price on market conditions (as in perfect competition)

Preferences and Demand

- consider a country with L agents (work & consume)
- \bullet consumers draw utility from the n varieties

$$U = \sum_{i=1}^{n} c_i^{\alpha} \quad \alpha \in (0,1)$$

- love of variety: consumers are happier the more varieties they have
 - * assume consumption of each variety $c_i = c = C/n$ (equal shares of total consumption)
- individual demand of each variety i is the solution to

$$\max_{c_i} \sum_{\substack{i=1\\ s.t. \ w \ge \sum_{i=1}^n p_i c_i}}^n c_i^{\alpha}$$

• $w = \text{income}, p_i = \text{price of } i$

The Model: Demand

• to obtain demand, set the Lagrangean

$$\mathcal{L} = \sum_{i=1}^{n} c_i^{\alpha} - \lambda \left(\sum_{i=1}^{n} p_i c_i - w \right)$$

• the f.o.c. for c_i requires that for all i

$$\alpha c_i^{\alpha - 1} = \lambda p_i$$

• demand of variety i relative to j is

$$\frac{c_i}{c_j} = \left(\frac{p_i}{p_j}\right)^{-\frac{1}{1-\alpha}}$$

demand for each variety i is

$$c_i = \frac{w}{P} \left(\frac{P}{p_i}\right)^{\frac{1}{1-\alpha}}$$

* $P = \left[\sum_{i=1}^{n} p_i^{-\alpha/(1-\alpha)}\right]^{-(1-\alpha)/\alpha}$ is the price index (note: P decreasing in n)

The Model: Demand

• demand for each variety *i* is

$$c_i = \frac{w}{P} \left(\frac{P}{p_i}\right)^{\frac{1}{1-\alpha}}$$

- is increasing in the real wage $\uparrow w/P \Rightarrow \uparrow c_i$.
- decreasing in its price: $\downarrow p_i \Rightarrow \uparrow c_i$
- increasing in the price index: $\uparrow P \Rightarrow \uparrow c_i$. Intuitively, if the price of "other" varieties increase you substitute for the variety *i*.
- What is the price index? Think about the price weighted average of the consumption implied by the utility function.

•
$$P = \left[\sum_{i=1}^{n} p_i^{-\alpha/(1-\alpha)}\right]^{-(1-\alpha)/\alpha}$$

▶ $\uparrow n \Rightarrow \downarrow P \Rightarrow \downarrow c_i$: more goods, the consumers "split" demand between them.

The Model: Demand

• the price-elasticy of demand is

$$\epsilon_p = \frac{\%\Delta c_i}{\%\Delta p_i} = -\frac{\partial \ln c_i}{\partial \ln p_i} = \frac{1}{1-\alpha}$$

 ϵ_p is increasing in α

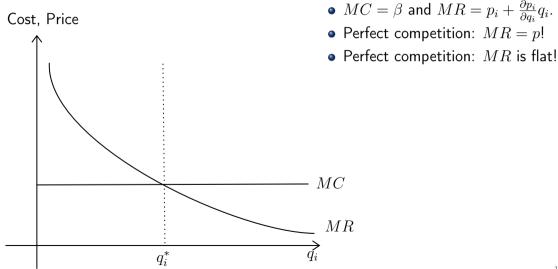
• the elasticity of substitution between any two varieties is

$$\epsilon_{ij} = \frac{\%\Delta\left(c_i/c_j\right)}{\%\Delta\left(p_i/p_j\right)} = -\frac{\partial\ln\left(c_i/c_j\right)}{\partial\ln\left(p_i/p_j\right)} = \frac{1}{1-\alpha}$$

 ϵ_{ij} is increasing in α

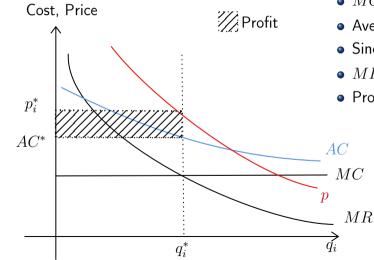
- \bullet we interpret α as the substitutability between varieties
- if $\uparrow \alpha \Rightarrow \uparrow \epsilon_{ij}$: you are willing to substitute more between varieties.

The Model: Firms and Prices


- All firms have the same technology (i.e. fixed cost F and marginal cost β).
- They have monopoly over one variety.
- Firm producing variety *i* chooses its quantity (or alternatively its price) so as to
 - maximize profit π_i , given aggregate demand for their variety $q_i = Lc_i$ and w = 1.

$$\max_{q_i} \left[\pi_i = p_i q_i - (F + \beta q_i) w \right]$$

s.t. $q_i = (P/p_i)^{1/(1-\alpha)} L/P \Leftrightarrow p_i = (L/q_i)^{(1-\alpha)} P^{\alpha}$


- \blacktriangleright Monopoly \Rightarrow it does not matter if we maximize over price or quantity.
- The f.o.c. requires that Mg. Revenue = Mg. cost:

$$Mg R_{\cdot} = p_i + \frac{\partial p_i}{\partial q_i} q_i = \beta = Mg_{\cdot} C_{\cdot}.$$

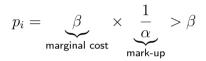
Monopolistic Competition

Monopolistic Competition

- $MC = \beta$ and $MR = p_i + \frac{\partial p_i}{\partial q_i} q_i$.
- Average cost = $AC = F/q + \beta$.
- Since, $\frac{\partial p_i}{\partial q_i} < 0$,
- MR(q) < p(q).
- Profit: $\pi = p \times q AC(q) \times q$

 \bullet differentiate p_i with respect to q_i and using the aggregate demand to obtain

$$p_i + \frac{\partial p_i}{\partial q_i} q_i = p_i - (1 - \alpha) \underbrace{\left(\frac{L}{q_i}\right)^{(1 - \alpha)} P^{\alpha}}_{= p_i} = \beta$$


$$\Rightarrow p_i - (1 - \alpha)p_i = \beta$$

hence

$$p_i = rac{eta}{lpha} \qquad {\rm and} \qquad q_i = \left(rac{Plpha}{eta}
ight)^{1/(1-lpha)} rac{L}{P}$$

Monopolistic Competition Pricing and Scale

• p_i equals perfect-competition price * mark-up

- higher elasticity of substitution ($\alpha \uparrow$):
 - ★ firms have less market power
 - * firms can charge lower mark-up \rightarrow lower price ($\alpha \uparrow \rightarrow p \downarrow$)
- same technology (same β) + isoelastic demand (constant elasticity, same α) implies
 - same price $(p_i = p)$
 - ► same scale $(q_i = q = (P/p)^{1/(1-\alpha)} L/P)$

Monopolistic Competition: Free Entry

 \bullet all firms have the same scale and prices, hence substituting q and p in profits

$$\pi = pq - F - \beta q = A\beta^{-\frac{\alpha}{1-\alpha}} - F$$

with $A \equiv (1 - \alpha)L (\alpha P)^{\alpha/(1 - \alpha)}$

- \blacktriangleright profit decreasing in marginal and fixed cost β and F
- profit increasing in mkt size L and price index P
- re-write profit as

$$\pi = \left(\frac{\beta}{\alpha} - \beta\right)q - F = 0$$

- new firms (i.e., varieties) enter the sector as long as $\pi > 0$
- \bullet in equilibrium, entry drives profit to zero, $\pi=0 \rightarrow$ obtain scale of production q

$$q = \frac{\alpha}{1 - \alpha} \frac{F}{\beta}$$

Equilibrium Varieties

- to obtain the equilibrium number of varieties, n, impose labor market clearing:
 - supply = L workers
 - demand= workers needed in overall production (fixed+variable)

$$L = (F + \beta q) n = F\left(1 + \frac{\alpha}{1 - \alpha}\right) n$$

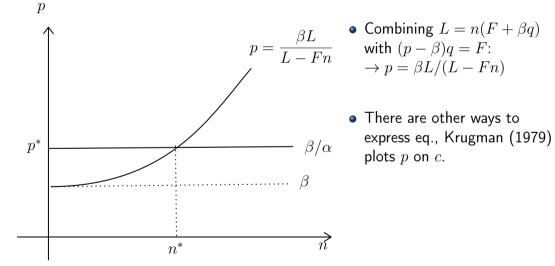
hence

$$n = \frac{L}{F} \left(1 - \alpha \right)$$

- ▶ larger economies produce more varieties $(L \uparrow \rightarrow n \uparrow)$
- the higher the fixed cost the fewer varieties ($F\uparrow \rightarrow n\downarrow$)
- the higher the elasticity of substitution the fewer varieties ($\alpha \uparrow \rightarrow n \downarrow$)

Equilibrium: Summary

• Optimality conditions of consumers and firms:


$$c_i = \frac{w}{P} \left(\frac{P}{p_i}\right)^{\frac{1}{1-\alpha}} = c$$
 and $p_i = \frac{\beta}{\alpha} = p$

• Free entry
$$(\pi = 0)$$
:
 $(p - \beta)q - F = 0 \Rightarrow q = \frac{\alpha}{1 - \alpha} \frac{F}{\beta}$

• Goods and labor market clearing:

$$q_i = q = L \times c_i$$
 and $L = n(F + \beta q)$

Equilibrium

1. Increasing Returns and Monopolistic Competition

2. Open Economy

3. Pro-Competitive GFT

4. Empirical Evidence

- Consider 2 countries:
 - same technology (*F*, β) and preferences (α)
 - \star all firms charge the same price ($p = p^*$)
 - \star and produce the same quantities ($q=q^{*}$)
 - possibly different country size ($L \neq L^*$)
 - ★ different number of varieties

$$n = \frac{L}{F} (1 - \alpha) \neq \frac{L^*}{F} (1 - \alpha) = n^*$$

- $\bullet\,$ In the usual neoclassical model: no comparative advantage $\Rightarrow\,$ no reasons for trade!
- Where are the gains for trade?

Gains From Trade

• Note that utility is increasing in *n*:

$$U = \sum_{i=1}^{n} c_i^{\alpha} = \sum_{i=1}^{n} \left(\frac{q}{L}\right)^{\alpha} = n \left(\frac{q}{L}\right)^{\alpha}$$

• where we used the fact that

$$q_i = q = c_i L \Rightarrow c_i = \left(\frac{q}{L}\right)$$

 when we open to trade the variety *i* is consumed in both countries (firm has to produce to serve both countries ⇒ large scale!)

$$q_i = q = c_i(L + L^*) \Rightarrow c_i = \left(\frac{q}{L + L^*}\right)$$

• number of available variety increases: $n + n^*$

Gains From Trade

- consumers in both countries can consume more varieties $(n + n^*)$
 - utility in autarky and free trade

$$U_A = n\left(rac{q}{L}
ight)^{lpha}$$
 and $U_{FT} = (n+n^*)\left(rac{q}{L+L^*}
ight)^{lpha}$

► GFT: utility is higher under free trade

$$\frac{U_{FT}}{U_A} = \frac{n+n^*}{n} \left(\frac{L}{L+L^*}\right)^{\alpha} = \left(\frac{L+L^*}{L}\right)^{1-\alpha} > 1$$

- new type of GFT: gains from variety
 - gains are lower if varieties are better substitutes $(\alpha \uparrow \rightarrow U_{FT}/U_A \downarrow)$
 - gains are higher for smaller countries

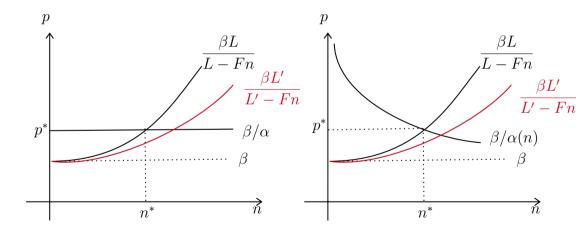
$$\star \ \text{ if } L^* > L \rightarrow \ \left(L+L^*\right)/L > \left(L+L^*\right)/L^*$$

• each country exports its varieties and imports the foreign ones

$$X = \frac{L^*}{L^* + L} nq \text{ and } M = \frac{L}{L^* + L} n^* q$$

- nq: quantity produced at home; $L^*/(L^* + L)$: demand by foreign.
- ▶ n^*q : quantity produced by foreign; $L/(L^* + L)$: demand by home.
- all firms in both countries are exporters
- trade is intra-industry trade
 - export and import same good (different varieties)

1. Increasing Returns and Monopolistic Competition


2. Open Economy

- 3. Pro-Competitive GFT
- 4. Empirical Evidence

- Another possible gain: More firms in the market decrease market power of monopolistics.
- $\uparrow n$ decreases mark-up $\downarrow 1/\alpha$
- assume that α is increasing in $n: \alpha(n) \Rightarrow$ changes in n affect prices! $p = \beta/\alpha(n)$
 - smartphones become better substitutes as more varieties enter the market (e.g., HTC, Motorola, Nokia, Sony etc.)
 - \blacktriangleright monopoly power erodes as n increases
 - \blacktriangleright mark-ups and prices fall: $n \uparrow \rightarrow \alpha \uparrow \rightarrow p \downarrow$
 - profits fall \rightarrow less entry

- Effects of trade (an increase in *L*):
 - varieties increase by less: $n_{FT} < n_A$, $n_{FT}^* < n_A^*$
 - less gains from variety
 - \blacktriangleright but prices fall and we are able to consume more of each variable \rightarrow pro-competitive GFT!
- The decrease in variety (relative to the case without pro-competitive) happens because: lower prices ⇒ lower profits ⇒ lower entry.

Extension: Pro-Competitive GFT

1. Increasing Returns and Monopolistic Competition

2. Open Economy

3. Pro-Competitive GFT

4. Empirical Evidence

Evidence on Intra-Industry Trade (IIT)

• How to measure IIT? Grubel y Lloyd index (*IIT*):

$$IIT_j = 1 - \frac{|e_j - i_j|}{e_j + i_j}$$

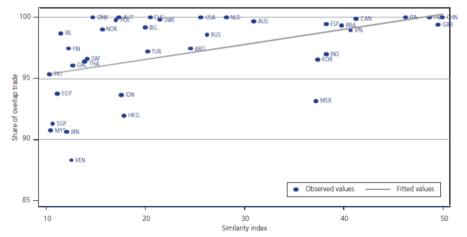
- j =sector (more or less disaggregated definition)
- e = export of the sector
- i = import of the sector
- $IIT_j = 0$ if j only imports or exports (no IIT)
- $IIT_j = 1$ if j imports as much as it exports (max IIT)
- If e and i very similar \Rightarrow IIT is close to 1 and there is lots of intra-industry trade.
- If one of e or i very large and the other close to 0 \Rightarrow $IIT\approx 0$ and no intra-industry trade.
- The *IIT* can be applied between two countries, or home vs rest of the world.

Intra-Industry Trade: Data

United Sta	ites	Germany		
Top 10 products				
Product (SITC-2)	Grubel Lloyd Index	Product (SITC-2)	Grubel Lloyd Index	
Metalworking machinery	0.9980	Crude fertilizer/mineral	0.985	
Dairy products & eggs	0.9941	Leather manufactures	0.975	
Leather manufactures	0.9915	Railway/tramway equipment	0.970	
Power generating equipment	0.9876	Sugar/sugar prep/honey	0.966	
Electrical equipment	0.9740	Non-ferrous metals	0.953	
Perfume/cosmetic/	0.9479	Meat & preparations	0.947	
Crude fertilizer/mineral	0.9405	Furniture/furnishings	0.946	
Animal/veg oils processed	0.9393	Coffee/tea/cocoa/spices	0.946	
ndustry special machine	0.9186	Animal feed	0.937	
Plastics non-primary form	0.9009	Organic chemicals	0.935	
Bottom 10 products				
Cork/wood manufactures	0.2876	Dyeing/tanning/	0.55	
Furniture/furnishings	0.2830	Metalworking machinery	0.54	
Gas natural/manufactured	0.2727	Fixed veg oils/fats	0.47	
Petroleum and products	0.1798	Industry special machine	0.45	
Fravel goods/handbag/etc	0.1612	Vegetables and fruit	0.45	
Hide/skin/fur, raw	0.1590	Pulp and waste paper	0.44	
Dil seeds/oil fruits	0.1384	Petroleum and products	0.40	
Apparel/clothing/access	0.1135	Gas natural/manufactured	0.24	
ootwear	0.1110	Oil seeds/oil fruits	0.18	
Manufactured fertilizers	0.0789	Coal/coke/briquettes	0.13	

IIT higher for differentiated and high-tech goods

- $\bullet\,$ the IIT index has 2 potential limitations
 - ▶ the less disaggregated the sectors, the higher *IIT*
 - ► *IIT* does not distinguish between intermediates (engines) and final goods (cars) within a sector
- solution: 2 indexes computed on super-disaggregated data
 - "vertical" IIT: intermediate goods imported and exported in the same industry
 - ▶ "horizontal" *IIT*: similar final goods imported and exported in the same industry
- both *IIT* predominant between similar (advanced) countries
- unidirectional trade predominant between different countries (North-South)


Intra-Industry Trade: Data

• share of German trade with its partners

Partner	Horizontal	Partner	Vertical	Partner	One way
United Kingdom	0.56	Malaysia	0.49	Bangladesh	1.00
Switzerland	0.53	Italy	0.41	Zimbabwe	0.99
France	0.52	Spain	0.39	Madagascar	0.98
Austria	0.51	Belgium	0.38	Algeria	0.98
Netherlands	0.49	Portugal	0.37	Nigeria	0.97
Denmark	0.49	Netherlands	0.37	Macao, China	0.97
Czech Republic	0.47	France	0.36	Panama	0.97
US	0.47	Slovenia	0.35	FYROM	0.97
Belgium	0.45	Sri Lanka	0.34	Iran	0.96
Singapore	0.44	Hong Kong, China	0.34	Ghana	0.96

Intra-Industry Trade and Similarity

Intra-industry trade and similarity in economic size, selected trading partners, Germany, 2004 (Percent)

Summary

- $\bullet~\text{IRS}$ + differentiated goods \rightarrow monopolistic competition
 - monopolist's price is decreasing in substitutability
- $\bullet \ \text{larger markets} \to \text{more varieties}$
- $\bullet \ \ \text{more varieties} \rightarrow happier \ \text{consumers}$
- efect of trade = increase market size
 - \blacktriangleright more varieties \rightarrow more varieties can be consumed in both countries
 - gains from trade = gains from variety
- pattern of specialization and trade
 - each country specializes in a number of different varieties depending on its size
 - each country exports all domestic and imports all foreign varieties: intra-industry trade
- smaller countries benefit more from trade