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Introduction

• At this point, we have only focus on the Stationary Equilibrium.

• Many questions involve solving the model beyond the Steady-State Stationary Equilibrium.

• Aggregate Uncertainty:
▶ How the Aiyagari economy reacts to aggregate shocks.
▶ Does heterogeneity matters to the business cycles?

• Transitions Dynamics:
▶ How long it takes to the economy reach a new steady state after an economic reform.
▶ How to compute the transition from one steady state to another.
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Aiyagari + Aggregate Uncertainty

• We are going to focus in the simplest version of the Aiyagari model with aggregate
uncertainty.

• The only modification is an aggregate TFP shock in the production funcion:

Yt = ZtK
α
t L

1−α
t

logZt = ρz logZt−1 + σzεt

• Sometimes this is known as the Krusell-Smith economy.
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Aiyagari + Aggregate Uncertainty

• Prices are allowed to vary over the cycles.

• To write in recursive form, we also include the aggregate variables as a state in the HH
problem.

▶ Individual state: (a, s), aggregate state: (Z, λ).

V (a, s;Z, λ) = max
c, a′≥0

{u(c) + βE[V (a′, s′;Z ′, λ′)|s, Z]}

s.t c+ a′ = w(Z, λ) exp{s}+ (1 + r(Z, λ)− δ)a

λ′ = H(Z, λ, Z ′)

▶ Note the dependence of prices on the distribution.
▶ The function H is the law of motion/forecasting function of the distribution.
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Equilibrium

• Prices are given by FOCs of firm’s problem:

w(Z, λ) = Zα

Å
K(Z, λ)

N(Z)

ã1−α

and r(Z, λ) = Z(1− α)

Å
N(Z)

K(Z, λ)

ãα
where aggregate employment N(Z) is given by the distributions of the Markov process
(which may depend on Z).

• Asset market clears:
K(Z, λ) =

∫
adλ

• The distribution evolves according to the function: λ′ = H(Z, λ, Z ′). In equilibrium, with
rational expectation, this function is consistent with the individual decisions.
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HA with Aggregate Uncertainty

Hard problem to solve:

• Prices are functions of the distribution, so distribution must be part of the state space.

• But the distribution is infinitesimal object with a lot of information.

• Furthermore, agents must forecast the evolution of the distribution to form expectations.

• And the forecast has to be consistent with the individuals decision (i.e., fixed point).
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Computational

To solve a heterogeneous agent economy with aggregate uncertainty the main methods are:

• State-space Methods:
▶ Krusell-Smith (1998, JPE) bounded rationality algorithm.

▶ Reiter (2009, JEDC) Method.

• Sequence-space Methods:
▶ MIT shock (Boppart, Krusell and Mitman, 2018, JEDC).

▶ Auclert, Bardóczy, Rognlie and Straub (2021, ECTA) sequence space Jacobian.

• There are others/variations of algorithms and evolutions of the original ones. Check Algan
et al (2014).
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Krusell & Smith (1998) Bounded Rationality

• References: Krusell-Smith’s original paper is easy to follow. Check also Nakajima’s notes.

• Because prices are allowed to vary over the cycles and they are needed for the household
problem: the aggregate state, (Z, λ), is part of the state of the HH.

▶ Problem: the distribution, λ, is a high-dimensional object and the state space increases
substantially.

• Krussel & Smith (1998): instead of using the entire distribution, just use some
moments of the distribution:

▶ Households are “boundedly rational” on how the distribution evolves.
▶ In this class of models, the mean (first moment) is enough to correctly forecast prices:

λ′ = H(Z, λ, Z ′) ⇒ K ′ = H(Z,K,Z ′) (1)
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Krusell & Smith (1998)

• Substitute λ by K. Example:

V (a, s;Z,K) = max
c, a′≥0

{
u(c) + βE[V (a′, s′;Z ′,K ′)|s, Z]

}
s.t c+ a′ = w(Z,K) exp{s}+ (1 + r(Z,K)− δ)a

K ′ = H(Z,K,Z ′)

• Intuition: the mean of λ works well to forecast prices because the savings policy function
is approximately linear.

▶ The curvature of the policy function is close to the borrowing constraint, but these agents
hold little wealth and thus do not matter to the aggregate.

• For more complex models, one may need higher moments.
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Krusell-Smith Algorithm

• Suppose Z is a two-state Markov-Chain (recession and boom).

• Approximate the function forecasting function H() with a log-linear form:

logK ′ = al + bl logK if Z = Zl

logK ′ = ah + bh logK if Z = Zh

• We have to find the parameters: (al, ah, bl, bh).

• As any continuous state, we must discretize K so we must interpolate when applying the
function above.

11 / 53



Krusell-Smith Algorithm

Discretize the state space: (a, s,K,Z). Recover the prices r(K,Z) and w(K,Z) for each state
space using the firm’s problem.

(i) Guess the parameters of the forecast function: (a0l , a
0
h, b

0
l , b

0
h).

(ii) Given (a0l , a
0
h, b

0
l , b

0
h), solve the Bellman Equation of the HH for all the state space

(a, s,K,Z).

(iii) Given the household policy functions, simulate T periods:

▶ Draw a sequence of Zt for all T . Guess a initial distribution λ0.

▶ Using the policy function and the sequence Zt, keep updating the distribution λt forward.

▶ Compute the mean of the distribution Kt (and other moments if necessary).

▶ Drop the first T0 periods. Now, we have a sequence {Zt,Kt}Tt=T0
.
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Krusell-Smith Algorithm

(iv) Using the sequence {Zt,Kt}Tt=T0
, run a linear regression and recover the new coefficients:

(a1l , a
1
h, b

1
l , b

1
h).

(v) Check the distance between the guess a0, b0 and the new parameters a1, b1. If it is smaller
than tol, we are done. Otherwise, update the guess and start again:

a0 = d a0 + (1− d)a1

b0 = d b0 + (1− d)b1

where d ∈ (0, 1) is a damping parameter.
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Krusell-Smith Algorithm: Issues

• After you finish, you must check the R2 of the forecast regression. If the R2 is low, you
must add more moments or change the function form.

▶ In Krusell-Smith, R2 = 0.999, so the perceived law of motion of K is very close to the actual
law of motion.

• Poor initial guesses might not converge. One good guess is a = logKss and b = 0.

• Good: KS captures potential non-linearities and large shocks. For instance, asymmetries
between the boom and the recession; uncertainty shocks; etc.

• Bad: KS can be inaccurate if there are explicitly distributional channels coming from the
top of the wealth distribution. Potentially very slow.
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Krussell-Smith: State of the Art

• If you need to solve a HA model using a truly global method, the state-of-the-art
nowadays is to use Deep learning/machine learning:

• See Fernandéz-Villaverde, Hurtado & Nuño (ECTA, 2023); Azinovic et al (IER, 2022);
Maliar et al (2021); and other papers by Fernandéz-Villaverde and Galo Nuño.
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Reiter Method: Projection + Pertubation

• Perturbation Methods:
▶ Generalization of the well-known linearization around the steady state.
▶ Often used to solve DSGE/representative agent models.
▶ They tend to be fast, but require derivatives and some stability conditions (Blanchard-Kahn).

• Standard software (i.e., dynare) uses this method.

• Reiter (2009) propose to solve for the stationary equilibrium using global methods
(projection methods), and then use perturbation methods to solve for the aggregate shock.

• If you need a refresher on Pertubation methods, check Fernandez-Villaverde’s notes.
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Reiter’s Method

• We can write the solution of DSGE models as a nonlinear system of difference equations:

EtF (xt, xt+1, yt, yt+1) = 0 (2)

where x is the vector of predetermined variables (state), y is nonpredetermined variables
(control).

• Then, we can linearize the system (either numerically or analytically) and use methods to
solve the linear system of difference equations:

▶ Blanchard and Kahn (1980); Uhlig (1999); Sims (2000); Rendahl (2018).
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Reiter’s Method

• Example: Stochastic Neoclassical Growth model

EtF (xt, xt+1, yt, yt+1) = Et

c−γ
t − βEtc

−γ
t+1[αk

α−1
t+1 + 1− δ]

ct + kt+1 − eztkαt − (1− δ)kt
zt+1 − ρzt − σεt+1

 = 0

where x = [k, z]′ and y = [c].

• First row is the Euler Equation, second is the feasibility constraint, and the last is the
stochastic process of the shock.
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Reiter’s Method

• Example: Krusell-Smith economy.

EtF (xt, xt+1, yt, yt+1) = Et


λt+1 − λtΠga,t

Vt − (uga,t + βΠga,tVt+1)
zt+1 − ρzt − σεt+1

ED(ga,t, λt, zt, Pt)


where x = [λ, z]′ and y = [V P ]′.

▶ λ is the p.d.f of the distribution;
▶ Pt are the prices;
▶ ED() is an arbitrary excess demand function (which implicitly includes firm’s foc);
▶ Πga,t is the transition matrix induced by the optimal policy:

ga,t = argmaxu(a(1 + rt) + wts− a′) + βEtVt+1(a
′, s′, λ′, z′)
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Reiter’s Method

• Since we discretize both λ and Vt, the first two rows must hold for ALL the idiosyncratic
state.

• The number of equations that we need to linearize is exponentially large.

• Linearization is often done using numerical derivatives. Nowadays people use automatic
differentiation to do the job.

• Solution (up to first order) has certainty equivalence: no precautionary savings because
of aggregate risk.

• The method cannot capture nonlinearities or sign asymmetries (again up, to first order).
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Reiter’s Method: State-of-the-art

• Good:
▶ Similar to standard methods using in RA-DSGE (some people argue that is possible to do it

in Dynare).
▶ Easier to do second-order approximations than the sequence-space methods and faster than

fully global methods.

• Bad:
▶ Tend to be quite hard to implement because they require some type of dimensionality

reduction to be fast.
▶ Numerical derivatives can be unstable when mixed with discretization.

• State-of-the-art:
▶ Bayer and Luetticke (QE, 2020): The codes are available in their website (Matlab, Python

and Julia): https://www.ralphluetticke.com/.
▶ Ahn, Kaplan, Moll, Winberry and Wolf (NBER Macro, 2018); Bhandari et al. (2023) -

Second and higher-order approx; Winberry (QE, 2018) - HA Firms, but implemented in
Dynare; Bilal (2023).
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Sequence Space

• Instead of including the aggregate variables in the state-space, we can index everything
through time: {rt, wt, Vt, λt, ...}Tt=0.

• Then, we solve the model in the Sequence space from t ∈ {0, .., T}, where T is a large
number.

• For instance, we can simulate an impulse response function (IRF), which is just a
deterministic transition dynamics between two steady states after an unexpected aggregate
shock (a MIT shock).

• Boppart, Krusell and Mitman (2018) show that the IRF can be used to compute
equilibrium of HA with agg. uncertainty.

▶ Solving for the transition dynamics is also useful if you are interested in studying the
transition to a new steady state after a change in economic policy.
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Transition Dynamics and MIT shocks

• MIT shock: an unpredictable shock to the steady-state equilibrium of an economy
without shocks.

▶ No shocks are expected to ever materialize but nevertheless a shock now occurs!

• We can now analyze the equilibrium transition along a perfect-foresight path until the
economy reaches the steady state.

• Some argue that Tom Sargent coined the term reflecting that some researchers at MIT
used the method.

▶ For fresh-water economists, a MIT shock is inconsistent with rational expectations!
▶ “A shock of probability zero, only at MIT they can get away with that!”.
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MIT shock

• Suppose a standard Ayiagari in the steady state at t = 0. At t = 1, the economy receives
an (unexpected) TFP aggregate shock:

Yt = ZtK
α
t L

1−α
t

logZt = ρz logZt−1 + εt

where εt = 0.01 if t = 1 and εt = 0 otherwise.

• If 0 < ρz < 1, when t → ∞, the shock vanishes and we are back to the original steady
state.

• Our goal is to solve the transition dynamics between the two steady states.
▶ Because Zt varies in the transition, aggregate variables (prices, savings, distribution) change

during the transition.
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Sequential Equilibrium

• Instead of carrying the aggregate state, we index the Bellman Equation by time t.

Vt(a, s) = max
c, a′≥0

{
u(c) + β

∑
s′∈S

π(s′|s)Vt+1(a
′s′)

}
s.t c+ a′ = wts+ (1 + rt − δ)a

• The distribution follows the L.O.M: λt+1 = Πga,tλt ∀t.

• The asset market must clear for all t:∫
A×S

adλt(a, s; rt) ≡ At(rt) = Kt(rt)

both the distribution, λt(a, s), and the aggregate capital, Kt, are indexed by t.
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IRF: Standard Aiyagari Economy
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IRF: Standard Aiyagari Economy
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Transition Dynamics between Steady States

• The method is useful to compute transition between different steady states.

• Example: Suppose a labor tax, τl, that is used to finance a lump-sum transfer, Tt. The
budget constraint:

c+ a′ = wts(1− τl) + (1 + rt − δ)a+ Tt.

The government runs a balanced budget: Tt = τlwtL.

• Suppose the economy is in the SS with τl = 0. At t = 1, the government decides to raise
the tax rate: τl = 0.2 (there are no aggregate shocks).

• How long does the economy take to reach the new steady state?
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Transition to New SS: Labor Tax
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Algorithm

(i) Solve for the initial and the final steady state. Select a large number of periods T .

(ii) Guess a path of {Kg
t }

T−1
t=2 . K1 and KT are given by the initial/final steady state. Recover

the prices {rt, wt}T−1
t=2 using the firm’s problem and the sequence of Zt.

(iii) Given prices, {rt, wt}Tt=2, solve the value function (and policy functions) backwards from
t = T − 1, ...2 starting from the final steady state value function.

▶ Endogenous Grid works well, but careful to use the correct prices!

(iv) Starting from the initial steady state distribution, simulate the distribution forward
from t = 1, ..., T − 1 using the policy functions, ga,t(a, s) and the Markov process of s.
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Algorithm

(v) Compute aggregate savings (capital) using the distribution for all t: {Ks
t }T−1

t=2 .

(vi) Compute the maximum difference between the guess sequence, {Kg
t }, and the new

sequence, {Ks
t }. If it is smaller than tol, stop. Otherwise, update the guess using the rule:

Kt = dKs
t + (1− d)Kg

t for t = 2, .., T − 1,

where λ ∈ (0, 1) is a dampening parameter, and return to (ii).
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Algorithm

• The “shooting algorithm” does not have established convergence properties but tends to
work well in practice.

• The damp parameter should not be too large, otherwise, it may not converge.

• T has to be large enough to allow the shock to fade out completely. Always check the last
transition between times T − 1 and T .

• A good initial guess is Kss = Kt for all t.

• If labor supply is endogenous you can guess K/L. If you need to find the eq. in other
markets you have to guess an additional sequence.
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Boppart-Krusell-Mitman (2018)

• Intuitively, the method uses the impulse response function as a sufficient statistic to
compute the eq. of the model.

• In theory, dynamic programming says that any aggregate statistic of the model can be
computed as a function of the aggregate state: x(Z, λ).

• Instead of using aggregate state, we can also write the aggregate stats as a function of
past shocks. For example, the aggregate capital at time t is:

Kt = K(εt, εt−1, εt−2, ...),

where εt is the innovation of the aggregate at time t.
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Boppart-Krusell-Mitman (2018)

• If we assume that the model response to the shock is approximately linear, we can write
Kt as a linear function of past shocks:

Kt = K(εt, εt−1, εt−2, ...) = εtK(1, 0, 0, ...) + εt−1K(0, 1, 0, ...) + εt−2K(0, 0, 1, ...) + ...

where K(0, 1, 0, ...) is the (non-linear) response of capital at time t to a shock (scaled to
1) that happened at t− 1.

• Note that each K is the response of ONLY ONE shock at each point in time.

• In the notation of BKM: K0 = K(1, 0, 0, ...), K1 = K(0, 1, 0, ...), etc. Then:

Kt =

∞∑
s=0

εt−sKs
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Boppart-Krusell-Mitman (2018)

• When we compute an impulse response function to an MIT shock, we get exactly the
response of capital to a 1% shock that happened s periods before!

• That is, we have a sequence of K:

[K(1, 0, 0, ...),K(0, 1, 0, ...),K(0, 0, 1, ...), ...]

• We have that for all aggregate statistics of the model: C, A, ....

• To simulate the model, we can simply draw a sequence of shocks ε and use the statistics
computed by the impulse response.

35 / 53



Boppart-Krusell-Mitman (2018)

Figure: Simulation of Aggregate Capital using BKM
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Boppart-Krusell-Mitman (2018)

• Good: It is easy to use. The only thing you need is an impulse response function. You can
compute using standard dynamic programming methods.

• It is trivial to add more shocks. Because shocks are linear, you just need to simulate two
IRF for each shock. Then, the final effect of the shocks is simply additive.

• Bad: If the model is highly non-linear or has sign-dependence it can be a poor
approximation.

• As every other linear method, it assumes certainty equivalence. No second-order effects
from aggregate risk; It may perform poorly if the shock brings you far from the steady
state.
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Sequence-Space Jacobian

• Auclert, Bardóczy, Rognlie and Straub (2021). Using the Sequence-Space Jacobian
to Solve and Estimate Heterogeneous-Agent Models.

• Instead of solving for the full transition, they show that the Jacobian (the derivatives of
perfect-foresight) of the equilibrium is enough.

• They provide a very efficient method to compute these Jacobians, and show that by
composing and inverting the Jacobians we can solve for the GE of the model very fast.

▶ Check their NBER lecture notes at: here.

▶ Also the notes of Jeppe Druedahl: here.

▶ Python notebooks with plenty of examples are available: here.
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Sequence-Space Jacobian

• Their idea is that we can write the model in blocks and draw it as directed acyclic graphs
(DAGs).

• A block is a part of the model that can be solved independently of the other parts.
Example:

▶ Household Block ⇒ takes as given sequences of prices/policies (interest rates, wages, tax
policies) and output sequences of aggregate consumption, savings, etc.

• Every block takes a sequence of inputs and outputs.

• The model is a combination of household block, firm block, government block, equilibrium
block, etc.
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Sequence-Space Jacobian

• Denote sequences of variables, e.g. Zt, as vectors Z = (Z0, Z1, ...).

• Example: Krusell-Smith Model → Exogenous: Z, Endogenous: K.
▶ Firm’s Problem: Z,K −→ r,w.

▶ Household’s Problem: r,w −→ C,A (where C and A are vectors of aggregate
consumption and savings, e.g., Ct =

∫
gc,t(a, s)dΦt).

▶ Market Clearing: A,K −→ H ≡ A−K (assets mkt clearing, alternatively we could have
used the goods mkt).

• Equilibrium: There is a sequence K, that clears the market, H = 0, in all periods t given
the sequence of exogenous variable Z.
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Block Representation of Krusell-Smith Model
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Capital Response to Shocks

• Goal is to solve for market equilibrium given a sequence of exogenous shocks. In our
example: H ≡ A−K.

▶ The sequence of aggregate savings, A = (A0, A1, ...), is a function of the entire sequences of
interest rate, r, and, w. Further, r, and wage, w are functions of the sequences of shock, Z,
and capital, K.

▶ Also, for every t, aggregate savings is a function of the entire sequences Z and K. Then:

At(r,w) = At(Z,K) (3)

• The equilibrium condition in period t is:

Ht(Z,K) = At(Z,K)−Kt

• The sequences of equilibrium conditions are: H(Z,K) = A(Z,K)−K.
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Capital Response to Shocks

• Auclert et al (2021) ⇒ we don’t need to solve for the entire equilibrium sequence to
recover the response of K to Z. Just need to look Jacobians.

• From the implicit function theorem, the linear impulse response of K to a transitory
technology shock dZ = (dZ0, dZ1, ...)

′ is:

dK = H−1
K HZdZ

where HK and HZ are the Jacobians of H with respect to K and Z, evaluated at the
steady state.

• Once we have dK, we can easily compute the response of other variables.

43 / 53

https://en.wikipedia.org/wiki/Implicit_function_theorem


The Jacobians

• To compute HK and HZ, we may have to use the chain-rule.

• For example, the eq. response to Z is the response of A to changes in r and, w, which
further respond to Z. We can write as a composite of Jacobians:

HZ = JA,r · Jr,Z + JA,w · Jw,Z

where JA,r is the Jacobian of A to r, and so on.

• The Jacobians of H are just the chain-rule of each model blocks’ Jacobians (J).
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The Jacobians

• What the Jacobians look like? Depends how complicated are model blocks.

• Some are very simple, some are complicated. The “Representative firm block” is simple.

• Example: w only depends on the contemporaneous Z.
▶ wt = (1− α)Zt

Ä
Kt

Nt

äα
. Then, the Jacobian is:

Jw,Z =


∂w0

∂Z0

∂w0

∂Z1
. . .

∂w0

∂ZT
...

. . .
. . .

...
∂wT

∂Z0

∂wT

∂Z1
. . .

∂wT

∂ZT

 =


(1− α)

Ä
K0
N0

äα
0 . . . 0

...
. . .

. . .
...

0 0 . . . (1− α)
Ä
KT
NT

äα
▶ Note that we can exploit the sparsity of the matrix.
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Simple Jacobian

• JY,Z = Kα
t N

1−α
t in the diagonal.
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The Jacobians

• The household Jacobian is complicated. Since the EE is forward looking, future shocks are
anticipated by the household..

• Example: A depends on the entire path of w.
▶ Household changes its behavior in time t, once she understands her earnings change in time

t+ s.
▶ Since At is aggregate savings, we just need that some households change their behavior to

change At.

JA,w =


∂A0

∂w0

∂A0

∂w1
. . .

∂A0

∂wT
...

. . .
. . .

...
∂AT

∂w0

∂AT

∂w1
. . .

∂AT

∂wT


▶ Matrix is not sparse anymore.
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HA Jacobian

• JC,r has intertemporal effects.

• Each consumption response (∂Ci
∂rj

) is an element of the matrix:
▶ If the increase of r happened in the past (j ≤ i): consumption increases ⇒ wealth effect

changes the distribution.
▶ If the increase of r will happen in the future (j > i): consumption decreases (savings

increase) ⇒ substitution effect.
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HA Jacobians
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Fake News Algorithm

• Problem: Computing the Jacobians can be very costly ⇒ It requires backward (policy
function) and forward (distribution) for every J.

• Auclert et al (2021) develops an algorithm based on “news shocks” (i.e., learning today
that future income increases) ⇒ Fake News Algorithm.

• Intuition:
▶ Only the difference between two periods matter (not the actual t) for policy functions ⇒ a

single backward iteration is sufficient.

▶ For the effect through the distribution, they use a “Fake News” shock: a shock in period s
announced in t = 0 but retracted at t = 1.

▶ Using tedious algebra and the chain-rule they can construct all the Jacobians fast.
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Impulse Response Function
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Non-linear Solutions

• The Jacobians give a linearized IRF. They can be imprecise for large shocks or in models
with aggregate non-linearities.

• The package also give an algorithm to compute the nonlinear perfect foresight
dynamics (i.e., the MIT shock).

• The idea is to use the fact that an equilibrium must solve: H(K,Z) = 0, iterate in a
sequence of Kj , where j is the guess of K, and update using:

Kj+1 = Kj −HK(Kss, Zss)
−1H(Kj , Z)

• Note this is very similar to a Newton Algorithm, which in practice has very fast
convergence.
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Sequence-Space Jacobian

• Once we have the Jacobians of each model block, we can compute the response to any
type of shocks, IRF, or transition dynamics for a new SS.

• The key is to compute the Jacobians efficiently.

• The algorithm allows us to solve even very complex HANK models.

• It can also be applied to more general models (entry-exit, discrete choices, etc), but some
details must be taken care of.

• Limitations:
▶ ⇒ models where the Bellman equation depends directly on the distribution (e.g., wage

posting search models).
▶ ⇒ solving the stationary equilibrium can be costly in some models, must apply some tricks to

speed up this step.
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