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Introduction

At this point, we have only focus on the Stationary Equilibrium.

e Many questions involve solving the model beyond the Steady-State Stationary Equilibrium.

Aggregate Uncertainty:

» How the Aiyagari economy reacts to aggregate shocks.
» Does heterogeneity matters to the business cycles?

Transitions Dynamics:

» How long it takes to the economy reach a new steady state after an economic reform.
» How to compute the transition from one steady state to another.
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References

e Boppart, Krusell and Mitman (2018, JEDC)*: Intuitive paper on how transition dynamics
can be used to simulate aggregate shocks (+ history about the MIT shocks).

e Auclert, Bardéczy, Rognlie and Straub (2021, ECTA)*: State-of-the-art method to solve
HA models with aggregate uncertainty.
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Aiyagari + Aggregate Uncertainty

e We are going to focus in the simplest version of the Aiyagari model with aggregate
uncertainty.

e The only modification is an aggregate TFP shock in the production funcion:

Y; = Z; KL}~
log Z; = p,log Zy 1 + 0,64

e Sometimes this is known as the Krusell-Smith economy.
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Aiyagari + Aggregate Uncertainty

e Prices are allowed to vary over the cycles.

e To write in recursive form, we also include the aggregate variables as a state in the HH
problem.

» Individual state: (a, s), aggregate state: (Z, \).

V(a,s; Z,\) = max, {u(c) + BE[V (', s'; Z", \)|s, Z]}

s.t c+a =w(Z N exp{s}+(1+r(Z,\) —da
N = H(Z\Z)

» Note the dependence of prices on the distribution.
» The function H is the law of motion/forecasting function of the distribution.
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Equilibrium

e Prices are given by FOCs of firm’s problem:

W(Z.N) = Za (K]\([(Zé?))l_a and  7(Z,\) =Z(1-«a) <KJ\(](ZZi)>a

where aggregate employment N(Z) is given by the distributions of the Markov process
(which may depend on 7).

e Asset market clears:

K(Z,\) = /ad)\

e The distribution evolves according to the function: N = H(Z, X\, Z"). In equilibrium, with
rational expectation, this function is consistent with the individual decisions.
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HA with Aggregate Uncertainty

Hard problem to solve:
e Prices are functions of the distribution, so distribution must be part of the state space.
e But the distribution is infinitesimal object with a lot of information.
e Furthermore, agents must forecast the evolution of the distribution to form expectations.

e And the forecast has to be consistent with the individuals decision (i.e., fixed point).
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Computational

To solve a heterogeneous agent economy with aggregate uncertainty the main methods are:

e State-space Methods:
» Krusell-Smith (1998, JPE) bounded rationality algorithm.

» Reiter (2009, JEDC) Method.

e Sequence-space Methods:
» MIT shock (Boppart, Krusell and Mitman, 2018, JEDC).

» Auclert, Bardéczy, Rognlie and Straub (2021, ECTA) sequence space Jacobian.

e There are others/variations of algorithms and evolutions of the original ones. Check Algan
et al (2014).
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Krusell & Smith (1998) Bounded Rationality

e References: Krusell-Smith's original paper is easy to follow. Check also Nakajima's notes.

e Because prices are allowed to vary over the cycles and they are needed for the household
problem: the aggregate state, (Z, \), is part of the state of the HH.

» Problem: the distribution, A, is a high-dimensional object and the state space increases
substantially.

o Krussel & Smith (1998): instead of using the entire distribution, just use some

moments of the distribution:

» Households are “boundedly rational” on how the distribution evolves.
» In this class of models, the mean (first moment) is enough to correctly forecast prices:

N=H(Z\Z) = K=HZK,Z) (1)
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Krusell & Smith (1998)

e Substitute A\ by K. Example:

Via,s;Z,K) = max {u )+ BE[V (a’,s';Z’,K’)]s,Z]}

s.t c+d :w(Z,K)exp{s}—i—(l—i—r(Z,K)—5)a
K' = H(Z,K,Z')

e Intuition: the mean of A works well to forecast prices because the savings policy function
is approximately linear.

» The curvature of the policy function is close to the borrowing constraint, but these agents
hold little wealth and thus do not matter to the aggregate.

e For more complex models, one may need higher moments.
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Krusell-Smith Algorithm

Suppose Z is a two-state Markov-Chain (recession and boom).

e Approximate the function forecasting function H () with a log-linear form:

logK':al+bllogK if Z =2
logK':ah—{-bhlogK if Z =2,

We have to find the parameters: (a;, ap, by, by).

e As any continuous state, we must discretize K so we must interpolate when applying the
function above.
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Krusell-Smith Algorithm

Discretize the state space: (a, s, K, Z). Recover the prices (K, Z) and w(K, Z) for each state
space using the firm’s problem.

(i) Guess the parameters of the forecast function: (a, a9, b?,59).

(i) Given (a?,a?,b?, 1Y), solve the Bellman Equation of the HH for all the state space
(a,s,K, 7).
(iii) Given the household policy functions, simulate 7" periods:
» Draw a sequence of Z; for all T'. Guess a initial distribution Ag.
» Using the policy function and the sequence Z;, keep updating the distribution \; forward.
» Compute the mean of the distribution K (and other moments if necessary).

» Drop the first T, periods. Now, we have a sequence {Zt,Kt};f:TO.
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Krusell-Smith Algorithm

(iv) Using the sequence {Zt,Kt}tT:TO, run a linear regression and recover the new coefficients:
11 31 11
(a;, ap, by, by)-

(v) Check the distance between the guess a’,b” and the new parameters a',b!. If it is smaller
than tol, we are done. Otherwise, update the guess and start again:

a®=da®+(1—dal
W =dbv’+(1-ap

where d € (0,1) is a damping parameter.
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Krusell-Smith Algorithm: Issues

After you finish, you must check the R? of the forecast regression. If the R? is low, you
must add more moments or change the function form.

» In Krusell-Smith, R? = 0.999, so the perceived law of motion of K is very close to the actual
law of motion.

Poor initial guesses might not converge. One good guess is a = log Kss; and b = 0.

Good: KS captures potential non-linearities and large shocks. For instance, asymmetries
between the boom and the recession; uncertainty shocks; etc.

Bad: KS can be inaccurate if there are explicitly distributional channels coming from the
top of the wealth distribution. Potentially very slow.
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Krussell-Smith: State of the Art

e If you need to solve a HA model using a truly global method, the state-of-the-art
nowadays is to use Deep learning/machine learning:

e See Fernandéz-Villaverde, Hurtado & Nufio (ECTA, 2023); Azinovic et al (IER, 2022);
Maliar et al (2021); and other papers by Fernandéz-Villaverde and Galo Nufio.

15/53



Reiter Method: Projection 4+ Pertubation

Perturbation Methods:
» Generalization of the well-known linearization around the steady state.
» Often used to solve DSGE /representative agent models.
» They tend to be fast, but require derivatives and some stability conditions (Blanchard-Kahn).

Standard software (i.e., dynare) uses this method.

Reiter (2009) propose to solve for the stationary equilibrium using global methods
(projection methods), and then use perturbation methods to solve for the aggregate shock.

If you need a refresher on Pertubation methods, check Fernandez-Villaverde's notes.
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Reiter’'s Method

e We can write the solution of DSGE models as a nonlinear system of difference equations:

EiF (x4, 41, Yt Yep1) =0 (2)

where x is the vector of predetermined variables (state), y is nonpredetermined variables
(control).

e Then, we can linearize the system (either numerically or analytically) and use methods to
solve the linear system of difference equations:

» Blanchard and Kahn (1980); Uhlig (1999); Sims (2000); Rendahl (2018).
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Reiter’'s Method

e Example: Stochastic Neoclassical Growth model

;' — BEwc okt +1 0]
EiF(xg, xi41, Yo, Y1) = By | o+ by — ek — (1= )k | =0
Zt+1 — PRt — O€t+1

where = = [k, z|" and y = [¢].

e First row is the Euler Equation, second is the feasibility constraint, and the last is the
stochastic process of the shock.
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Reiter’'s Method

e Example: Krusell-Smith economy.

A1 — Aellg,
‘/t - (ﬂga,t + BHga,t‘/t‘l'l)

RZt+1 — PRt — O€¢41
ED(ga,t7 /\t7 Zt, Pt)

EiF(x¢, 41, Yt Y1) = By

where x = [\, 2] and y = [V P]'.

A is the p.d.f of the distribution;

P, are the prices;

ED() is an arbitrary excess demand function (which implicitly includes firm's foc);
I, , is the transition matrix induced by the optimal policy:

g(l,t = arg maXu(a(l + ’I”t) =+ WS — a,) + 5Et‘/t+l (a/’ 8/7 )\l’ Zl)

v

vV vVvYyy
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Reiter’'s Method

e Since we discretize both A and V;, the first two rows must hold for ALL the idiosyncratic
state.

e The number of equations that we need to linearize is exponentially large.

e Linearization is often done using numerical derivatives. Nowadays people use automatic
differentiation to do the job.

e Solution (up to first order) has certainty equivalence: no precautionary savings because
of aggregate risk.

e The method cannot capture nonlinearities or sign asymmetries (again up, to first order).
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Reiter’'s Method: State-of-the-art

e Good:
» Similar to standard methods using in RA-DSGE (some people argue that is possible to do it
in Dynare).
» Easier to do second-order approximations than the sequence-space methods and faster than
fully global methods.

e Bad:
» Tend to be quite hard to implement because they require some type of dimensionality

reduction to be fast.
» Numerical derivatives can be unstable when mixed with discretization.

e State-of-the-art:
» Bayer and Luetticke (QE, 2020): The codes are available in their website (Matlab, Python
and Julia): https://www.ralphluetticke.com/.
» Ahn, Kaplan, Moll, Winberry and Wolf (NBER Macro, 2018); Bhandari et al. (2023) -
Second and higher-order approx; Winberry (QE, 2018) - HA Firms, but implemented in
Dynare; Bilal (2023).
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Sequence Space

e Instead of including the aggregate variables in the state-space, we can index everything
through time: {rt,wt,%,)\t,...};‘rzo.

e Then, we solve the model in the Sequence space from ¢ € {0, .., T}, where T is a large
number.

e For instance, we can simulate an impulse response function (IRF), which is just a
deterministic transition dynamics between two steady states after an unexpected aggregate
shock (a MIT shock).

e Boppart, Krusell and Mitman (2018) show that the IRF can be used to compute
equilibrium of HA with agg. uncertainty.

» Solving for the transition dynamics is also useful if you are interested in studying the
transition to a new steady state after a change in economic policy.
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Transition Dynamics and MIT shocks

e MIT shock: an unpredictable shock to the steady-state equilibrium of an economy
without shocks.
» No shocks are expected to ever materialize but nevertheless a shock now occurs!

e We can now analyze the equilibrium transition along a perfect-foresight path until the
economy reaches the steady state.

e Some argue that Tom Sargent coined the term reflecting that some researchers at MIT
used the method.

» For fresh-water economists, a MIT shock is inconsistent with rational expectations!
» “A shock of probability zero, only at MIT they can get away with that!".
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MIT shock

e Suppose a standard Ayiagari in the steady state at t = 0. At ¢ = 1, the economy receives
an (unexpected) TFP aggregate shock:

Y; = Z; KL}~
log Zy = p.log Zy 1 + &4

where ¢, = 0.01 if t = 1 and &; = 0 otherwise.

e If 0 < p, <1, when t — oo, the shock vanishes and we are back to the original steady
state.

e Qur goal is to solve the transition dynamics between the two steady states.

» Because Z; varies in the transition, aggregate variables (prices, savings, distribution) change
during the transition.
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Sequential Equilibrium

e Instead of carrying the aggregate state, we index the Bellman Equation by time ¢.

Vi(aw)zgggo{ +ﬁ§s Vmas)}
s.t ct+ad =ws+ (1+r—d)a
e The distribution follows the L.O.M: A\;y1 =11, , A; Vi

e The asset market must clear for all ¢:
/ adXi(a, s;1¢) = Ay(ry) = Ki(ry)
AxS
both the distribution, Ai(a, s), and the aggregate capital, K}, are indexed by ¢.
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IRF: Standard Aiyagari
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IRF: Standard Aiyagari Economy
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Transition Dynamics between Steady States

e The method is useful to compute transition between different steady states.

e Example: Suppose a labor tax, 7, that is used to finance a lump-sum transfer, T;. The
budget constraint:

c+ad =ws(l—7)+ (1+r—da+T;.

The government runs a balanced budget: T; = rjw; L.

e Suppose the economy is in the SS with 7, = 0. At ¢t = 1, the government decides to raise
the tax rate: 7, = 0.2 (there are no aggregate shocks).

e How long does the economy take to reach the new steady state?
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Transition to New SS: Labor Tax

Labor Tax K
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Algorithm

(i) Solve for the initial and the final steady state. Select a large number of periods 7.

(i) Guess a path of {K7} ' K and K7 are given by the initial/final steady state. Recover
the prices {ry, w;}{_5 using the firm's problem and the sequence of Z;.

(iii) Given prices, {r,w;}L_,, solve the value function (and policy functions) backwards from
t =T —1,...2 starting from the final steady state value function.

» Endogenous Grid works well, but careful to use the correct prices!

(iv) Starting from the initial steady state distribution, simulate the distribution forward
fromt =1,...,T — 1 using the policy functions, g,+(a,s) and the Markov process of s.
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Algorithm

(v) Compute aggregate savings (capital) using the distribution for all ¢: {K7}1."

(vi) Compute the maximum difference between the guess sequence, { KY}, and the new
sequence, {K;'}. If it is smaller than tol, stop. Otherwise, update the guess using the rule:

Ki=dK;+(1—-d)K} fort=2,.,T -1,

where X € (0,1) is a dampening parameter, and return to (7).
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Algorithm

e The “shooting algorithm” does not have established convergence properties but tends to
work well in practice.

e The damp parameter should not be too large, otherwise, it may not converge.

e T has to be large enough to allow the shock to fade out completely. Always check the last
transition between times T'— 1 and 7.

e A good initial guess is Kss = K; for all ¢.

e If labor supply is endogenous you can guess K/L. If you need to find the eq. in other
markets you have to guess an additional sequence.
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Boppart-Krusell-Mitman (2018)

e Intuitively, the method uses the impulse response function as a sufficient statistic to
compute the eq. of the model.

e In theory, dynamic programming says that any aggregate statistic of the model can be
computed as a function of the aggregate state: z(Z, \).

e Instead of using aggregate state, we can also write the aggregate stats as a function of
past shocks. For example, the aggregate capital at time ¢ is:

Kt = K(5t>5t—175t—2a ),

where ¢; is the innovation of the aggregate at time .

33/53



Boppart-Krusell-Mitman (2018)

e |f we assume that the model response to the shock is approximately linear, we can write
K as a linear function of past shocks:

Kt = K(&t,€t_1,€t_2, ) = €tK(1, 0, 07 ) + Et_lK(O, ]., 0, ) + Et_gK(O, 0, 1, ) + ...

where K(0,1,0,...) is the (non-linear) response of capital at time ¢ to a shock (scaled to
1) that happened at ¢ — 1.

e Note that each K is the response of ONLY ONE shock at each point in time.

e In the notation of BKM: Ky = K(1,0,0,...), K1 = K(0,1,0,...), etc. Then:

[eS)
Kt = Z Et—sKs
s=0

34/53



Boppart-Krusell-Mitman (2018)

e When we compute an impulse response function to an MIT shock, we get exactly the
response of capital to a 1% shock that happened s periods before!

That is, we have a sequence of K:

[K(1,0,0,...), K(0,1,0,...), K(0,0,1,...), ...]

We have that for all aggregate statistics of the model: C, A, ....

To simulate the model, we can simply draw a sequence of shocks € and use the statistics
computed by the impulse response.
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Boppart-Krusell-Mitman (2018)

Figure: Simulation of Aggregate Capital using BKM
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Boppart-Krusell-Mitman (2018)

e Good: It is easy to use. The only thing you need is an impulse response function. You can
compute using standard dynamic programming methods.

e It is trivial to add more shocks. Because shocks are linear, you just need to simulate two
IRF for each shock. Then, the final effect of the shocks is simply additive.

e Bad: If the model is highly non-linear or has sign-dependence it can be a poor
approximation.

e As every other linear method, it assumes certainty equivalence. No second-order effects
from aggregate risk; It may perform poorly if the shock brings you far from the steady
state.
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Sequence-Space Jacobian

e Auclert, Barddczy, Rognlie and Straub (2021). Using the Sequence-Space Jacobian
to Solve and Estimate Heterogeneous-Agent Models.

e Instead of solving for the full transition, they show that the Jacobian (the derivatives of
perfect-foresight) of the equilibrium is enough.

e They provide a very efficient method to compute these Jacobians, and show that by
composing and inverting the Jacobians we can solve for the GE of the model very fast.

» Check their NBER lecture notes at: here.
» Also the notes of Jeppe Druedahl: here.

» Python notebooks with plenty of examples are available: here.
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Sequence-Space Jacobian

e Their idea is that we can write the model in blocks and draw it as directed acyclic graphs
(DAGs).
e A block is a part of the model that can be solved independently of the other parts.
Example:
» Household Block = takes as given sequences of prices/policies (interest rates, wages, tax
policies) and output sequences of aggregate consumption, savings, etc.
e Every block takes a sequence of inputs and outputs.

The model is a combination of household block, firm block, government block, equilibrium
block, etc.
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Sequence-Space Jacobian

e Denote sequences of variables, e.g. Z;, as vectors Z = (Zy, Z1, ...).
e Example: Krusell-Smith Model — Exogenous: Z, Endogenous: K.
» Firm’s Problem: Z, K — r,w.

» Household’s Problem: r,w — C, A (where C and A are vectors of aggregate
consumption and savings, e.g., C; = [ gc¢(a, s)d®,).

» Market Clearing: A, K — H = A — K (assets mkt clearing, alternatively we could have
used the goods mkt).

e Equilibrium: There is a sequence K, that clears the market, H = 0, in all periods ¢ given
the sequence of exogenous variable Z.
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Block Representation of Krusell-Smith Model

B
V

Exogenous: Z
Endogenous: K

K

Household's

Block

Market Clearing:
H=A-K
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Capital Response to Shocks

e Goal is to solve for market equilibrium given a sequence of exogenous shocks. In our
example: H= A — K.
» The sequence of aggregate savings, A = (4g, A1, ...), is a function of the entire sequences of
interest rate, r, and, w. Further, r, and wage, w are functions of the sequences of shock, Z,
and capital, K.

» Also, for every t, aggregate savings is a function of the entire sequences Z and K. Then:
Ay(r,w) = A(Z,K) 3)
e The equilibrium condition in period ¢ is:
Hy(Z,K) = A(Z,K) — K,
e The sequences of equilibrium conditions are: H(Z,K) = A(Z,K) — K.
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Capital Response to Shocks

e Auclert et al (2021) = we don't need to solve for the entire equilibrium sequence to
recover the response of K to Z. Just need to look Jacobians.

e From the implicit function theorem, the linear impulse response of K to a transitory
technology shock dZ = (dZy,dZ,...) is:

dK = Hy'HzdZ

where Hg and Hy are the Jacobians of H with respect to K and Z, evaluated at the
steady state.

e Once we have dK, we can easily compute the response of other variables.
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The Jacobians

e To compute Hk and Hyz, we may have to use the chain-rule.

e For example, the eq. response to Z is the response of A to changes in r and, w, which
further respond to Z. We can write as a composite of Jacobians:

Hy = J47 . Jr? 4 Jaw . guwZ

where JA7 is the Jacobian of A to r, and so on.

e The Jacobians of H are just the chain-rule of each model blocks’ Jacobians (J).
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The Jacobians

e What the Jacobians look like? Depends how complicated are model blocks.

e Some are very simple, some are complicated. The “Representative firm block” is simple.

e Example: w only depends on the contemporaneous Z.
»wy = (1-a)Z; (%)a Then, the Jacobian is:

o Owo Owo K
0Zy 07, = 0Zr (1-a)(52)" O 0
J’U),Z — . . . . — .
% dwry aﬂ 0 0 (1— a)' Kz \®
0Zo 07, T 0Zp (%)

» Note that we can exploit the sparsity of the matrix.
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Simple Jacobian

e JVZ = Kf N/~ in the diagonal.

J_{Y,Z}:
[[2.28364649 B. a. B.
[B. 2.28364649 8. @.

[a. @. 2.28364649 0.
[8. 8. a. 2.28364649 .
[a. @. a. a. 2.28364649] ]

46 /53



The Jacobians

e The household Jacobian is complicated. Since the EE is forward looking, future shocks are
anticipated by the household..

e Example: A depends on the entire path of w.
» Household changes its behavior in time ¢, once she understands her earnings change in time

t+ s.
» Since A; is aggregate savings, we just need that some households change their behavior to

change A;.
oAy DAy OA
8100 3101 o 8107
JAw — : ) ) :
0Ar OAr OAT
8100 8101 o aIUT

» Matrix is not sparse anymore.
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HA Jacobian

e JO7 has intertemporal effects.

J_{C,r}:
[[ 8.53172749 -1,22045882 -1.14979648 -1.88450169 -1.8237652 ]
[ 8.52752393 0.600944 -1.15779184 -1.8919@085 -1.03M6@995]

[ 8.52334341 0.59396873 0.66245358 -1.18@087911 -1.@3888918]
[ 8.51918469 B.58763628 0.65396671 0.71839458 -1.84871115]
[ 2.51504555 @.5815717 ©0.64610874 @.78874635 0.76968641]]

e Each consumption response (gf?') is an element of the matrix:
J

> If the increase of r happened in the past (j < 4): consumption increases = wealth effect
changes the distribution.

» If the increase of r will happen in the future (j > 4): consumption decreases (savings
increase) = substitution effect.
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HA Jacobians
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Fake News Algorithm

e Problem: Computing the Jacobians can be very costly = It requires backward (policy
function) and forward (distribution) for every J.

e Auclert et al (2021) develops an algorithm based on “news shocks” (i.e., learning today
that future income increases) = Fake News Algorithm.

e Intuition:

» Only the difference between two periods matter (not the actual ) for policy functions = a
single backward iteration is sufficient.

» For the effect through the distribution, they use a “Fake News" shock: a shock in period s
announced in t = 0 but retracted at t = 1.

» Using tedious algebra and the chain-rule they can construct all the Jacobians fast.
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Impulse Response Function
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Non-linear Solutions

e The Jacobians give a linearized IRF. They can be imprecise for large shocks or in models
with aggregate non-linearities.

e The package also give an algorithm to compute the nonlinear perfect foresight
dynamics (i.e., the MIT shock).

e The idea is to use the fact that an equilibrium must solve: H(K,Z) = 0, iterate in a
sequence of K7, where j is the guess of K, and update using:

KT = KV — Hy (K, Zos) " H(K, Z)

e Note this is very similar to a Newton Algorithm, which in practice has very fast
convergence.
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Sequence-Space Jacobian

e Once we have the Jacobians of each model block, we can compute the response to any
type of shocks, IRF, or transition dynamics for a new SS.

The key is to compute the Jacobians efficiently.

The algorithm allows us to solve even very complex HANK models.

It can also be applied to more general models (entry-exit, discrete choices, etc), but some
details must be taken care of.

Limitations:

» = models where the Bellman equation depends directly on the distribution (e.g., wage
posting search models).

» = solving the stationary equilibrium can be costly in some models, must apply some tricks to
speed up this step.
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