Advanced Macroeconomics
 Hopenhayn \& Rogerson (1993)

Tomás R. Martinez
INSPER

Introduction

Hopenhayn \& Rogerson (1993): Quantitative application of the industry dynamics model.

- Large volume of job creation and destruction at the firm level that does not show up in the aggregate.
- Changes in employment at the firm level tend to be lumpy.
- How to consider these facts? What are the consequences of policies that make it costly to fire workers?
- Introduce adjustment costs \Rightarrow induce misallocation of resources across heterogeneous producers.
- Also, introduce general equilibrium to the household side.

Employment Reallocation across Firms (U.S)

Figure Ib
Size-Weighted Growth Rate Distribution

Model

- Focus on stationary equilibrium.
- Individual firm productivities, z, follow a first-order Markov process with distribution function $F\left(z^{\prime} \mid z\right)$.
- Entrants draw their initial productivity from a fixed distribution $z_{0} \sim G(z)$.
- Firms face convex labor adjustment costs, fixed cost and entry cost.
- Households supply labor elastically.

Household

- The representative household solves the following problem:

$$
\max _{C_{t}, N_{t}} \sum_{t=0}^{\infty} \beta^{t} \ln C_{t}+A N_{t} \quad \text { s.t. } \quad p_{t} C_{t}=w_{t} N_{t}+\Pi_{t}+T_{t}
$$

where:

- N_{t} : Household's labor supply.
- Π_{t} : Firm's profit.
- T_{t} : Transfers from government.
- The linear labor supply decision comes from Rogerson's (1988) Employment Lotteries Trick.
- Note that the problem can be solved as a sequence of static problems.
- We solve for the steady-state so safely ignore time subscripts. Normalize $w=1$

Household

- The problem:

$$
\max _{C, N} \ln C+A N \quad \text { s.t. } \quad p C=N+\Pi+T
$$

gives the household demand for the final good and the labor supply decision:

$$
C=\frac{1}{A p} \quad \text { and } \quad N=A-\Pi-T
$$

- Write them in the general form: $C=C^{h}(p, \Pi+T)$ and $N=N^{s}(p, \Pi+T)$.

Firms

- Firms produce the final good with: $y=z f(n)$, where $f(n)$ is a DRS technology.
- They face an adjustment cost function representing firing costs:

$$
g\left(n_{t}, n_{t-1}\right)=\tau \max \left\{0, n_{t-1}-n_{t}\right\}, \quad \tau \geq 0 .
$$

- The (static) profit problem is:

$$
p z f\left(n_{t}\right)-n_{t}-g\left(n_{t}, n_{t-1}\right)-p c_{f}
$$

- Key: Past employment n_{t-1} is a state variable.

Timing Within a Period

$$
\begin{aligned}
& \text { Incumbent begins period } t \text { with }\left(s_{t-1}, n_{t-1}\right) \\
& \text { Exit Decision } \\
& \text { receive }-g\left(0, n_{t-1}\right) \text { this period } \\
& \text { zero in all future periods } \\
& \text { find out value of } s_{t} \\
& \text { receive } p_{t} f\left(n_{t}, s_{t}\right)-n_{t}-g\left(n_{t}, n_{t-1}\right)-p_{t} c_{f}
\end{aligned}
$$

Fig. 1.-Timing of decisions

Incumbent Firms

- The value function of incumbent is:
$V(z, n)=\max _{n^{\prime} \geq 0}\left\{p z f\left(n^{\prime}\right)-n^{\prime}-g\left(n^{\prime}, n\right)-p c_{f}+\beta \max \left[-g\left(0, n^{\prime}\right), \int V\left(z^{\prime}, n^{\prime}\right) d F\left(z^{\prime} \mid z\right)\right]\right\}$ and the policy functions are $n^{\prime}=n^{d}(z, n ; p)$ and $\chi(z, n ; p) \in\{0,1\}$.
- Firms that exit have to pay the firing cost of their labor force and then receive zero in the following periods.

Entrants and Free Entry Condition

- Potential entrants are ex-ante identical.
- An entrant firm must pay the entry cost $c_{e}>0$ to set-up the plant and draw $z \sim G(z)$. Start producing next period with $n_{t-1}=0$.
- ps. in the original paper, H\&R assume that entrants produce in the same period.
- There is a $M \geq 0$ mass of entrants. In equilibrium, the free entry condition reads:

$$
\beta \int V(z, 0 ; p) d G(z) \leq c_{e}
$$

with strict equality if $M>0$.

Stationary Distribution

- Let $\mu(z, n)$ denote the distribution of firms across the state. The distribution follows the law of motion

$$
\mu_{t+1}\left(z^{\prime}, n^{\prime}\right)=\int Q\left(z^{\prime}, n^{\prime} \mid z, n\right) d \mu_{t}(z, n)+M_{t+1} G\left(z^{\prime}\right) \mathbf{1}_{\left[n^{\prime}=0\right]}
$$

where the transition function is given by the labor and exit policy function:

$$
Q\left(z^{\prime}, n^{\prime} \mid z, n\right)=F\left(z^{\prime} \mid z\right)(1-\chi(z, n)) \mathbf{1}_{\left[n^{\prime}=n^{d}(z, n)\right]} .
$$

- In the stationary equilibrium, we have $\mu_{t+1}=\mu_{t}=\mu$.
- The stationary distribution depends on two equilibrium objects: $\mu(p, M)$. Again, linearity implies that $\mu(p, M)=M \times \mu(p, 1)$.

Aggregation

- Aggregate production and labor demand:

$$
Y(p, M)=\int\left(z f\left(n^{d}(z, n ; p)\right)-c_{f}\right) d \mu \quad \text { and } \quad N^{d}(p, M)=\int n^{d}(z, n ; p) d \mu+M c_{e}
$$

- Expected firing tax revenue for a firm with state (z, n) is:

$$
r(z, n ; p)=[1-\chi(z, n)] \mathbb{E}_{z^{\prime} \mid z}\left[g\left(n^{d}\left(z^{\prime}, n^{d}(z, n)\right), n^{d}(z, n)\right)\right]+\chi(z, n) g\left(0, n^{\prime}\right)
$$

and aggregate tax revenue $T(p, M)=\int r(z, n ; p) d \mu$.

- Aggregate profits:

$$
\Pi(p, M)=p Y-N^{d}-T=\int \pi(z, n ; p) d \mu-M c_{e}
$$

Equilibrium

- We can solve for the equilibrium using the same approach as in the original Hopenhayn model.
- Step 1: Guess a price, p^{*}, and solve for the dynamic programming problem of the incumbents.
- Step 2: Check if p^{*} satisfies the free entry: $\beta \int V(z, 0 ; p) d G(z)=c_{e}$. If no, return to step 1.
- Note that the dynamic programming problem is more evolved than Hopenhayn since we must find the labor decision as well.

Equilibrium

- Step 3: Given p^{*}, and the policy functions, assume $M=1$ and solve for the stationary distribution $\mu\left(p^{*}, 1\right)$.
- Again, because labor is a state variable, solving for the invariant distribution is harder. One option is to use non-stochastic simulation.
- Step 4: Use either the goods market or the labor market clearing condition to solve for M.
- The functional forms used in the household problem make solving for the goods market easier:

$$
Y\left(p^{*}, M\right)=M \int\left(z f\left(n^{d}\left(z, n ; p^{*}\right)\right)-c_{f}\right) d \mu\left(p^{*}, 1\right)=C\left(p^{*}\right)
$$

Firing Taxes

- If there are no adjustment costs, $(\tau=0)$, the marginal product of labor equalize across firms

$$
z f^{\prime}\left(n^{\prime}\right)=\frac{1}{p},
$$

and we can easily see that $n^{d}(z, n)$ is independent of the previous employment n.

- When there are adjustment costs, $(\tau>0)$, the firm may not find optimal to re-adjust labor - even if z has changed.
- Hence, there is an inaction region:

$$
n^{d}(z, n)=n^{\prime}=n, \quad \text { if } \quad n \in\left(n_{L}(z), n_{H}(z)\right)
$$

Firing Taxes

Firing Taxes (Tax $10 \times$)

Inaction Region with High Tax

Higher τ increases the inaction region.

Firing Taxes

- The adjustment cost implies that adjustment is lumpy (if the adjustment cost is not quadratic).
- If the adjustment cost is quadratic, firms will adjust slowly (no inaction region).
- In H\&R the linear adj. cost induces the inaction region.
- Nowadays, it is more common a combination of fixed + symmetric quadratic adjustment.
- Nice property of having the inaction region, + analytical properties of quadratic adjustment.
- Adjustment costs are less important if shocks are very persistent:
- High persistent shocks \Rightarrow efficient scale does not change often.
- Low persistent shocks \Rightarrow efficient scale changes often.

Firing Taxes

- Because firms do not adjust their labor, the MPL does NOT equalize across producers \Rightarrow increase misallocation in the economy!
- Misallocation (in \%) for firm i : $\frac{\left|M P N_{i}-1 / p\right|}{1 / p} \times 100$.
- Firing cost reduces labor reallocation:
- Low-productivity firms should be shrinking;
- High-productivity firms should be expanding;
- The tax also prevents inefficient firms from exiting.
- Note that misallocation here is induced by an aggregate friction. In more sophisticated models, the misallocation can be firm-specific.

Numerical Simulation: $\tau=0.1$

```
Model Stats
Price: 1.4437674638040225
Avg. Firm Size: 111.09469333242433
Exit/entry Rate: 0.2732168521382527
Avg. Productivity: 4.323205664819014
Avg. Misallocation (%): 4.692349861632813
Agg. Output: 69.2632314462338
Agg. Labor Supply: 83.54227263629872
Agg. Tax Revenue: 1.7626005743152082
Agg. Profits: 14.695126789386073
Mass of Firms: 0.7167378826624267
Mass of Entrants: 0.19582486810926455
Size lllllllllllll
Firm Share 0.118 0.197 0.433 0.675 0.994
Emp. Share 0.005 0.016 0.094 0.252 0.915
```

Numerical Simulation: $\tau=0.1$

Numerical Simulation: $\tau=0.1$

Numerical Simulation: $\tau=0$

```
Model Stats
Price: 1.415691805169249
Avg. Firm Size: 110.28465494925103
Exit/entry Rate: 0.29482477569028853
Avg. Productivity: 4.33671698867755
Avg. Misallocation (%): 0.6433331033616971
Agg. Output: 70.6368431567242
Agg. Labor Supply: 84.65635014651724
Agg. Tax Revenue: 0.0
Agg. Profits: 15.34364985348276
Mass of Firms: 0.7286582187308964
Mass of Entrants: 0.21482649589222172
Size 10 20 50 100 1000
Firm Share 0.109 0.195 0.472 0.700 0.994
Emp. Share 0.005 0.017 0.107 0.262 0.905
```

No Taxes: Prices are lower, output is higher, profits are higher, more entry/exit, and less misallocation.

Numerical Simulation: High $\operatorname{Tax}(\tau=1.0)$

```
Model Stats
Price: 1.5654051097501829
Avg. Firm Size: 129.41346103152415
Exit/entry Rate: 0.1968934068638075
Avg. Productivity: 4.197329231590462
Avg. Misallocation (%): 24.061028775528854
Agg. Output: 63.881227534742514
Agg. Labor Supply: 84.86324401222404
Agg. Tax Revenue: 7.5172181798792455
Agg. Profits: 7.619537807896725
Mass of Firms: 0.6363884375295689
Mass of Entrants: 0.12530068755393214
Size 10 20 50 100 1000
Firm Share 0.126 0.141 0.268 0.576 0.995
Emp. Share 0.002 0.005 0.040 0.226 0.948
```


Conclusion

- $\mathrm{H} \& \mathrm{R} \Rightarrow$ application of the Hopenhayn firms' dynamics model.
- Attempts to match the facts on job reallocation across firms.
- Study the effect of a firing cost.
- The friction induces misallocation of resources \Rightarrow reduces aggregate productivity.

