Advanced Macroeconomics
 Hopenhayn Model

Tomás R. Martinez
INSPER

References

- Hopenhayn* (2014, Annual Review of Econ.): Comprehensive review paper. Easy to read.
- Hopenhayn (1992, Econometrica): Original paper. Mostly setting the mathematical foundations behind the model.
- Hopenhayn and Rogerson* (1993, JPE): Famous application of the model.
- Chris Edmond lecture notes are also a good source of information.

Introduction

Goal:

- Present the canonical model of industry/firms dynamics: Hopenhayn (1992).
- Many applications that span over
- Business cycles: investment, employment, adjustment costs, financial shocks;
- Development and growth: misallocation, financial development;
- International trade, labor, etc.
- Start with a static model to build intuition and move to a quantitative model.

Introduction

Three Static Models:

- Lucas (1978) span of control model.
- Hopenhayn's (1992) Industry dynamics model.
- Melitz (2003) monopolistic competition a la Dixit \& Stiglitz .

Simple Hopenhayn Economy

- Constant measure M of firms indexed by i (no entry/exit yet).
- Fixed number of workers N.
- Firms (plants) are heterogeneous in their productivity $z \sim G(z)$.
- They use only labor as input and produce according to the production function:

$$
y=z n^{\eta} \quad 0<\eta<1
$$

- Equilibrium wage w equalizes aggregate demand of labor to (fixed) supply of labor.

Simple Hopenhayn Economy

- Profit Maximization (price of the good is normalized to one):

$$
\pi(z)=\max _{n}\left\{z n^{\eta}-w n\right\}
$$

- Optimal demand of firm i satisfies: $\eta z_{i} n_{i}^{\eta-1}=w$.
- Since w is the same for all firms, Marginal Product of Labor equalizes across firms:

$$
\eta z_{j} n_{j}^{\eta-1}=\eta z_{i} n_{i}^{\eta-1} \quad \Leftrightarrow \quad \frac{z_{j}}{z_{i}}=\left(\frac{n_{j}}{n_{i}}\right)^{1-\eta}
$$

for two arbitrary firms i and j.

Simple Hopenhayn Economy

- This is also the efficient allocation. Suppose a benevolent social planner wants to maximize production in the economy.
- Maximize aggregate output Y subject to the aggregate resource constraint (labor).

$$
\max _{n_{i}} Y=\int y_{i} d i=\int z_{i} n_{i}^{\eta} d i \quad \text { s.t. } \quad N=\int n_{i} d i .
$$

- Let μ be the multiplier of the constraint. F.O.C implies for firm i :

$$
\eta z_{i} n_{i}^{\eta-1}=\mu \quad \Rightarrow \quad \frac{z_{j}}{z_{i}}=\left(\frac{n_{j}}{n_{i}}\right)^{1-\eta}
$$

- Efficient allocation implies that MPN should equalize across producers!
- More productive firms (high z) should hire more labor.

Simple Hopenhayn Economy

- MPN equalization implies that average products are equal across firms:

$$
\frac{y_{i}}{n_{i}}=z_{i} n_{i}^{\eta-1}=\frac{\mu}{\eta} .
$$

- We can write the aggregate production function as:

$$
Y=\int z_{i} n^{\eta} d i=\int z_{i} n_{i}^{\eta} d i=\frac{\mu}{\eta} \int n_{i} d i=\frac{\mu}{\eta} N
$$

- Using the aggregate resource constraint and the FOC:

$$
N=\int n_{i} d i=\int\left(\frac{\eta}{\mu} z_{i}\right)^{\frac{1}{1-\eta}} d i \Leftrightarrow \frac{\mu}{\eta} N=\left(\int z_{i}^{\frac{1}{1-\eta}} d i\right)^{1-\eta} N^{\eta}
$$

Simple Hopenhayn Economy

- Aggregate production function has the same form of the individual technology:

$$
Y=\left(\int z_{i}^{\frac{1}{1-\eta}} d i\right)^{1-\eta} N^{\eta}
$$

- It is also useful to write the production function as a function of the productivity distribution:

$$
Y=\left(\int z_{i}^{\frac{1}{1-\eta}} d G(z)\right)^{1-\eta} M^{1-\eta} N^{\eta}
$$

- In this interpretation, the production function has CRS in M and N and TFP is given by the geometric mean of firm-level productivity.

Simple Hopenhayn Economy

- The simple aggregation result provides a useful benchmark.
- Changes in the number of firms or changes in the distribution of productivity impact the aggregate output.
- This result can be generalized for multiple inputs.
- For example, suppose a technology: $y_{i}=z f(k, n)^{\eta}=z\left(k^{\alpha} n^{1-\alpha}\right)^{\eta}$. Then:

$$
Y=\left(\int z_{i}^{\frac{1}{1-\eta}} d i\right)^{1-\eta} f(K, N)^{\eta}
$$

where K is aggregate capital.

- Efficiency requires that the marginal product of capital is equalized across producers.

Monopolistic Competition

- An alternative way is to model a la Melitz (2003) using monopolistic competition.
- The final good is produced aggregating a continuum of intermediate inputs (varieties):

$$
Y=\left(\int_{0}^{M} y_{i}^{\eta} d i\right)^{\frac{1}{\eta}}, \quad 0<\eta<1 \quad \text { (gross substitutes). }
$$

- The solution implies the usual demand for input and optimal price index:

$$
y_{i}=\left(\frac{p_{i}}{P}\right)^{1 /(\eta-1)} Y \quad \text { where } \quad P=\left(\int p_{i}^{\frac{\eta}{\eta-1}} d i\right)^{\frac{\eta-1}{\eta}} .
$$

Monopolistic Competition

- Intermediate producers production function: $y_{i}=\tilde{z}_{i} n_{i}$ (where $\tilde{z}_{i}=z^{1 / \eta}$).
- Since intermediates are monopolistic producers, they choose both prices and quantities:

$$
\max _{y_{i}, p_{i}} p_{i} y_{i}-w \frac{y_{i}}{\tilde{z}_{i}} \quad \text { s.t. } \quad y_{i}=\left(\frac{p_{i}}{P}\right)^{1 /(\eta-1)} Y
$$

- The solution implies that firms equalize price to markup over marginal cost:

$$
p_{i}=\frac{1}{\eta} \frac{w}{\tilde{z}_{i}}
$$

- More productive firms can charge lower prices and capture a large share of the market.
- Which implies higher revenue and profits.

Monopolistic Competition

- After some boring calculations (see Melitz), one can show that

$$
\begin{aligned}
Y & =\left(\int \tilde{z}_{i}^{\frac{\eta}{1-\eta}} d G(z)\right)^{\frac{1-\eta}{\eta}} M^{\frac{1-\eta}{\eta}} N=\left(\int z_{i}^{\frac{1}{1-\eta}} d G(z)\right)^{\frac{1-\eta}{\eta}} M^{\frac{1-\eta}{\eta}} N \\
Y^{\eta} & =\left(\int z_{i}^{\frac{1}{1-\eta}} d G(z)\right)^{1-\eta} M^{1-\eta} N^{\eta}
\end{aligned}
$$

- Agg. production function in Melitz is just a scaled version of the one in Hopenhayn. Everything that maximizes Y also maximizes Y^{η}.
- Difference: in Melitz efficiency requires that the Marginal Revenue Product of Labor should be equalized across firms.
- Hopenhayn: the price is the same for all firms; Melitz: prices are different across firms!
- This distinction will be relevant when connecting to the data.

Entry

- Suppose that to open a new firm, a cost of c_{e} of workers are needed.
- Once the firm is created, it draws a z from $G(z)$ (ex-post heterogeneity).
- We can also model ex-ante heterogeneity (i.e., firm observes productivity and then decides whether to entry) but the choice does matter.
- How does a social planner decide the optimal number of firms in this economy?
- Two steps:
(i) For a fixed number of firms, choose the optimal labor split between the firms that operate (i.e., what we did before).
(ii) Choose the optimal number of firms.

Entry

- Planner's problem:

$$
\max _{M, N_{e}} Z M^{1-\eta} N_{e}^{\eta} \quad \text { s.t. } \quad c_{e} M+N_{e} \leq N .
$$

- Solution:

$$
N_{e}=\eta N \quad \text { and } \quad M=(1-\eta) N / c_{e},
$$

and the multiplier of the constraint is equal to the eq. wage.

- Decreasing returns to scale $(\eta<1)$ is essential: without it, we cannot get a non degenerate distribution!
- In Melitz, the curvature is generated by the elasticity of substitution in the CES production function instead of DRS.
- Substituting the solution:

$$
Y=Z \eta^{\eta}(1-\eta)^{1-\eta} c_{e}^{-(1-\eta)} N .
$$

- So the elasticity of output per capita with respect to the cost of entry is equal to $(1-\eta)$.
- One can think that aggregate TFP is a function of the geometric mean of the productivities (Z) and the cost of entry.
- Main implication: the cost of doing business is a potential source of cross-country disparities in income per capita.

Dynamic Model (Hopenhayn (1992))

- Thus far, the model we have solved is fully static: productivity is fixed and there are no up-and-down dynamics.
- Extend to have stochastic productivity \Rightarrow Workhorse model of industry dynamics.
- Focus on the stationary equilibrium: firms enter, grow and decline, and exit, but the overall distribution of firms is unchanging.
- Endogenous stationary distribution of firm size.
- The household side will be very simple. We will come back to that later.

Dynamic Model (Hopenhayn (1992))

- Continuum of firms, each measure zero, produce with DRS: $y_{i}=z_{i} n_{i}^{\eta}$
- Idiosyncratic risk: individual firm productivities, z, follow a first-order Markov process with distribution function $F\left(z^{\prime} \mid z\right)$.
- Entrants draw their initial productivity from a fixed distribution $z_{0} \sim G(z)$.
- Having entrants and incumbents draw productivity from different distributions allows non-trivial firm size distribution.
- Fixed cost to enter, c_{e}, per-period fixed cost, c_{f}.
- At the beginning of every period, incumbents decide to stay or exit, entrants decide to enter or not.

Incumbent Firms

- Incumbents maximize per-period profits:

$$
\pi(z ; p, w)=\max _{n}\left\{p z n^{\eta}-w n-w c_{f}\right\}
$$

- Usual solution:

$$
\eta p z n^{\eta-1}=w \quad \Rightarrow \quad n(z ; p, w)=\left(\frac{\eta p z}{w}\right)^{\frac{1}{1-\eta}}
$$

- Profits:

$$
\pi(z ; p, w)=(1-\eta)(p z)^{\frac{1}{1-\eta}}\left(\frac{\eta}{w}\right)^{\frac{\eta}{1-\eta}}-c
$$

- For a given $c_{f}>0$, there is a z such that $\pi=0$. From now on normalize $w=1$. We will solve for the equilibrium price.

Incumbent Firm

- At the beginning of every period, before knowing the realization of z, the firm decides to exit.
- Firms discount future profits by $1 /(1+r) \equiv \beta$, the value of the firm with productivity z is given by:

$$
V(z)=\pi(z ; p)+\beta \max \left\{\int V\left(z^{\prime}\right) d F\left(z^{\prime} \mid z\right), 0\right\}
$$

where the implicit assumption is that the value of exit is zero (no scrap value).

- It may be useful to write a discrete policy function: $\chi(z)=\{0,1\}$, where 1 represents exit.

Incumbent Firm

- Since profits are increasing in z and F is monotone, the value function is also increasing in z.
- There exists a threshold level \tilde{z} s.t., for all $z<\tilde{z}$ the firm decides to exit.
- We can find the threshold by equalizing the expected value of the firm with its scrap value:

$$
\mathbb{E}\left[V\left(z^{\prime}\right) \mid \tilde{z}\right]=\int V\left(z^{\prime}\right) d F\left(z^{\prime} \mid \tilde{z}\right)=0
$$

- This does NOT mean that the firms never have negative profits. They may incur negative profits if they expected some mean-reversion of z.

Entrants

- Potential entrants are ex-ante identical.
- An entrant firm must pay the entry cost $c_{e}>0$ to set-up the plant and draw $z \sim G(z)$. Start producing next period.
- The value of an entrant is:

$$
V_{e}(z)=-c_{e}+\beta \int V(z) d G(z)
$$

- A firm should enter as long $V_{e}(z) \geq 0$. If $V_{e}(z)>0$ firms enter the industry/market and drive profit to zero (free entry).
- In equilibrium, we have $V_{e}(z) \leq 0$.

Free Entry Condition

- Let $M \geq 0$ be the mass of entrants. The free entry condition implies that in equilibrium:

$$
\beta \int V(z) d G(z) \leq c_{e}
$$

with strict equality if $M>0$.

- Intuition: it could be that for some parameters the equilibrium features no entry, i.e. $M=0$.
- In this case, it should be: $V_{e}(z)<0$.

Distribution of Firms

- Let $\mu_{t}([0, z])$ be the measure of firms over the productivity space.
- The entry and exit rules imply an evolution for the distribution:

$$
\mu_{t+1}=\int F\left(z^{\prime} \mid z\right)(1-\chi(z)) d \mu_{t}+M_{t+1} G\left(z^{\prime}\right)
$$

- In the stationary equilibrium, we have $\mu_{t+1}=\mu_{t}=\mu$.
- As usual, the distribution is constant over time, but firms are constantly changing their size (since it is a function of z), and entering/exiting the market.

Demand and Supply

- Demand for goods comes from households.
- For simplicity, just assume that the demand is exogenously given by a function $D(p)$, where $D^{\prime}(p)<0$. A simple functional form: $D(p)=\bar{D} / p$.
- Supply of goods is given by operating firms:

$$
Y(p)=\int y(z ; p) d \mu
$$

note that the costs $\left(c_{e}, c_{f}\right)$ are paid in labor so they do not show up here.

- Market clearing requires: $D=Y$.
- $Y(p)$ is increasing in price; $D(p)$ is decreasing in price.

Equilibrium

- A stationary recursive competitive equilibrium: is solving for (p, M, \tilde{z}, μ) such that:
- goods market clears;
- incumbents make optimal exit decisions;
- no further incentives to enter;
- distribution μ defined recursively by the law of motion.
- The main difference with respect to the Aiyagari models is that we also need to determine the endogenous number of firms.
- Nevertheless, because of the linear properties of the distribution law of motion, we can decouple p from m and solve the model in two steps.
(i) Solve for the optimal price;
(ii) Solve for the endogenous mass of entrants M.

Solving for Equilibrium

- Discretize the state space z in n_{z} grid points. The usual methods apply (i.e, Tauchen).
- Since there is a discrete choice (exit decision), you should not economize in grid points.
- Assume a positive mass $M>0$ of entrants. Solve for price p following the steps:
(i) Guess a price p_{0}. Compute $\pi\left(z, p_{0}\right), n\left(z, p_{0}\right), y\left(z, p_{0}\right)$ for all grid points.
(ii) Solve for the Bellman Equation of the firm using value function iteration.
(iii) Given the value function $V(z)$, check the free entry condition.
(iv) If the free entry is not satisfied, update the guess and try again.

Solving for Equilibrium

- Let i the grid of the state z and $f_{i j}$ the transition probability from state i to j.
- Guess a value function $V^{0}\left(z_{i}\right)$ (a vector $n_{z} \times 1$). Using the guess, compute the $V^{1}\left(z_{i}\right)$ of the incumbent VF using:

$$
V^{1}\left(z_{i} ; p_{0}\right)=\pi\left(z_{i} ; p_{0}\right)+\beta \max \left\{\sum_{j=1}^{n_{z}} f_{i j} V^{0}\left(z_{j} ; p_{0}\right), 0\right\} \quad \forall i=1, . ., n_{z}
$$

- Check if the distance between the guess and the VF is smaller than a specified tolerance: $\max _{i}\left|V^{1}\left(z_{i} ; p_{0}\right)-V^{0}\left(z_{i} ; p_{0}\right)\right|<t o l$. If yes, stop it. Otherwise, update the guess $V^{0}\left(z_{i} ; p_{0}\right)=V^{1}\left(z_{i} ; p_{0}\right)$ and try again.
- Once the value function converges, collect exit decision in a vector $n_{z} \times 1$:

$$
\chi\left(z_{i} ; p_{0}\right)=1 \text { if } \sum_{j=1}^{n_{z}} f_{i j} V\left(z_{j} ; p_{0}\right)<0 ; \quad \chi\left(z_{i} ; p_{0}\right)=0 \text { if otherwise }
$$

Solving for Equilibrium

- Let g_{i} the discretized PMF of $G(z)$ over the same nodes z_{i}.
- Given the value function, $V\left(z_{i} ; p_{0}\right)$, compute the value of an entrant V^{e} :

$$
V^{e}\left(p_{0}\right)=-c_{e}+\beta \sum_{i=1}^{n_{z}} g_{i} V\left(z_{i} ; p_{0}\right)
$$

- In equilibrium (with $M>0$), free entry $\Rightarrow V^{e}\left(p_{0}\right)=0$.
- Since $V\left(z_{i} ; p_{0}\right)$ is monotone increasing in p, if the free entry condition is not satisfied update the price using a root-finding routine (bisection, Brent):
- If $V^{e}\left(p_{0}\right)>0 \Rightarrow$ reduce price to discourage entry.
- If $V^{e}\left(p_{0}\right)<0 \Rightarrow$ increase price to encourage entry.
- Take the new price guess, p_{1}, and try again (i.e.compute $\left.\pi\left(z ; p_{1}\right), V\left(z ; p_{1}\right)\right)$ until $V^{e}=0$.

Solving for Equilibrium

- Once we have found the optimal price p, we use the law of motion of μ and the goods market clearing condition to find M.
- Let μ_{i} denote the mass of firms in state i. Because of the linear law of motion for μ, the stationary distribution is linearly homogeneous in M :

$$
\mu=\hat{F}(p) \mu+M g \quad \Rightarrow \quad \mu=M(I-\hat{F}(p))^{-1} g
$$

where $\hat{F}(p)$ is the element-wise multiplication of the transition probability matrix with the exit decision vector: $\hat{F}(p)=F \times(1-\chi(p))$.

- The stationary distribution is a function of the eq. price p and the mass of entrants M : $\mu(p, M)$.
- Recall: μ and g are $n_{z} \times 1$ vectors; \hat{F} is $n_{z} \times n_{z}$ matrix.

Solving for Equilibrium

- To solve for M, use the market clearing: $D(p)=Y(p, M)$. Aggregate supply is the production of all firms:

$$
D(p)=\sum_{i=1}^{n_{z}} y\left(z_{i} ; p\right) \mu\left(z_{i} ; p, M\right)
$$

- We know p, use the equation to find M.
- Trick: because μ is linear in M, we can write: $\mu(p, M)=M \times \mu(p, 1)$. Hence:

$$
M=\frac{D(p)}{\sum_{i=1}^{n_{z}} y\left(z_{i} ; p\right) \mu\left(z_{i} ; p, 1\right)}
$$

- If $M>0$, you found an equilibrium (p, M, \tilde{z}, μ).

Solving for Equilibrium

- What if $M \leq 0$? Then, this is not an equilibrium. The free entry condition does not hold and we should have no entrants: $M=0$.
- The only stationary equilibrium consistent with no entry must have no exit.
- Stationary distribution of firms just given by stationary distribution of the Markov chain: $\mu\left(z_{i}\right)=\bar{f}_{i}$.
- You bypass the free entry condition and solve for prices using the goods market clearing:

$$
D(p)=\sum_{i=1}^{n_{z}} y\left(z_{i} ; p\right) \bar{f}_{i}
$$

Example

- Calibration: firm's productivity follows an $\operatorname{AR}(1)$.

$$
\begin{array}{lll}
\eta=2 / 3, & c_{e}=40, & c_{f}=20, \\
\rho=0.9, & \sigma=0.2, & \bar{D}=100 .
\end{array}
$$

```
Price: 5.711168128869063
Avg. Firm Size: 78.25684096478187
Exit/entry Rate: 0.15506572450345837
Productivity Cutoff: 0.7911120122611593
Aggregate Output: 17.50955281714009
Aggregate Profits: 16.295419243070263
```


Example

Stationary Distribution

Comparative Statics

- Increase in entry cost c_{e}
- increases prices;
- decreases exit threshold \Rightarrow less selection, incumbents make more profits, more continue;
- decreases entry/exit rate \Rightarrow increases average age of firms.
- Ambiguous implications for firm-size distribution and output:
\star price effect \Rightarrow increase output $y(z ; p)$ and employment $n(z ; p)$.
\star Selection effect (lower threshold) \Rightarrow more incumbent firms are relatively-low productivity firms.

```
Price: 6.1024327084988075
Avg. Firm Size: 87.37988124880879
Exit/entry Rate: 0.12355799954119917
Productivity Cutoff: 0.7217459972375988
Aggregate Output: 16.3869074477021
Aggregate Profits: 18.074290699288674
```


Other Empirical Issues

- Since employment is proportional to productivity, direct connection between productivity and size. A small productivity shock induces reallocation.
- Unconditionally, age of the firm matters:
- Firms enter small (recall the productivity distribution assumption), then firms survive only if they draw high productivities (and become larger).
- The model predicts that larger firms are old (and more efficient).
- However, conditional on size, age is irrelevant.
- Only small firms exit; in the data, some big firms exit as well.

Conclusion

- Firm Dynamics Model: open the aggregate production function black box.
- The model presented here is efficient: the welfare theorems hold and the competitive equilibrium is also the solution of the planner's problem.
- Policies (for instance, taxes) change this result and might affect the employment distribution.
- At this point, we abstract from capital. Introducing capital without some sort of friction does not change the analysis.
- But many papers introduce capital with frictions! Early contributions are:
- Veracierto (2002, AER) introduces plant-level capital irreversibility to study the aggregate propagation of individual-level investment.
- Cooley and Quadrini (2001, AER) and Gomes (2001, AER) firms also are subject to financial frictions.

Where to Go Now?

- Capital Frictions: Veracierto (2002, AER); Cooley and Quadrini (2001, AER); Gomes (2001, AER); Cooper and Haltiwanger (2006, ReStud);
- Labor Market Frictions: Hopenhayn and Rogerson (1993); Fujita and Nakajima (2016, RED); Kaas and Kircher (2015, AER); Bilal et al (2022, ECTA);
- Innovation: Klette and Kortum (2004); Akcigit and Kerr (2018).
- Development, Firm Size and Informality: Poschke (2018, AEJ: Macro), Bento and Restuccia (2017; AEJ: Macro); Ulyssea (2018, AER);
- International Trade and Open Economy: Melitz (2003, ECTA); Cosar et al. (2016, AER); Kambourov (2009, ReStud); Edmond et al. (2015, AER); Dix-Carneiro et al (2021, WP); Salomao and Varela (2022, ReStud)
- Demographics, Decline of Dynamism and Growth: Hopenhayn et al (2022, ECTA); Pugsley et al (Forthcoming, AER); Asturias et al (2023, AEJ: Macro).
- Entrepreneurial Heterogeneity: Queiró (2022, ReStud); Yurdagul (2017, JME).

