Advanced Macroeconomics

Computational Aspects of the Aiyagari Model

Tomás R. Martinez
INSPER

References

- Heer and Maussner (2009): Ch. 1, 4, and 7.
- Fehr and Kindermann (2019): Ch. 8 and 9.
- There are online notes by some very smart people: Makoto Nakajima, Alisdair McKay, Jesús Fernández-Villaverde, Econ-ark, and many others. A big thanks to all of them.
- I will assume that you know basic Dynamic Programming, Value Function Iteration and Markov chains.
- If you need a refresh, check Ljunqvist and Sargent: Ch. 2, 3, and 4.
- An advanced reference: Maliar and Maliar (2014, Numerical Methods for Large-Scale Dynamic Economic Models).

Baseline Aiyagari Model

- Aggregate production function: $Y_{t}=K_{t}^{\alpha} N_{t}^{1-\alpha}$
- Household Problem:

$$
\begin{aligned}
V(a, s) & =\max _{a^{\prime} \geq-\phi}\left\{u\left((1+r) a+w \exp \{s\}-a^{\prime}\right)+\beta \mathbb{E}\left[V\left(a^{\prime}, s^{\prime}\right) \mid s\right]\right\} \\
s_{t} & =\rho s_{t-1}+\sigma \varepsilon_{t}, \quad \text { where } \varepsilon
\end{aligned}
$$

- We must solve for the interest rate that clears the asset market:

$$
\int_{A \times S} a d \Lambda(a, s)=K
$$

where λ is the invariant distribution and K is the capital demand from the firm's problem.

Algorithm in a Nutshell

The solution of the problem is characterized by a fixed point:

1. Guess an interest rate r_{0} (or quantity of capital K_{0}).
2. Using r_{0} in the solution of the firm's problem, recover capital demand and the implied wage.
3. Given w and r_{0}, solve for policy functions of the household.
4. Given the household policy functions', solve for the invariant distribution.
5. Given the invariant distribution, compute the excess demand function:

$$
\Phi(r)=\int_{A \times S} a d \Lambda(a, s ; r)-K(r),
$$

if $\Phi(r)=0$, we found equilibrium. Otherwise, update the guess r_{0} and go back to step 2 .

Discretization

- We have to solve the HH problem using global methods.
- The first step is to discretize the state space!
- Trade-off between speed and accuracy: with more gridpoints, you have a more accurate solution, but it takes more time to solve the problem.
- You must always check that the solution of your model is not affected by the choices you make regarding the gridpoints!
- Sanity check: increase the number of gridpoints and change the boundary of the state space to check if anything is changing.

Discretization: Assets

- Choose the number of gridpoints n_{A}, the bounds of the state space ($a_{1}, a_{n_{A}}$) and a discretization method so the grid is:

$$
g_{A}=\left[a_{1}, a_{2}, \ldots, a_{n_{A}}\right]^{\prime}
$$

- Bounds: $a_{1}=-\phi$, the upper bound $a_{n_{A}}$ must be chosen so it never binds.
- A simple trick is to use the steady state k of the Neoclassical Growth Model and multiply by a constant.
- Gridpoints distance:
- Simplest way: equal distance between the gridpoints.
- Alternative: include more points in the area with more curvature/kinks. In Aiyagari, this is closer to the borrowing constraint.

$$
a_{i}=a_{1}+\left(a_{n_{A}}-a_{1}\right) \frac{(1+\nu)^{i-1}-1}{(1+\nu)^{n_{A}-1}-1} \quad \text { for } i=1,2, \ldots, n_{A} .
$$

where ν is the growth rate between points.

Discretization: Assets

Figure: Discretization: $a_{\min }=0, a_{\max }=250$ and $n_{A}=10$

More Points Close to Zero (nu $=0.1$)

Discretization: Assets

- Very often people use the same gridpoints to approximate both the policy functions and the invariant distribution, but it does NOT to be the case!
- The exact number of gridpoints will depend on the method used to solve for the policy function and the invariant distribution.
- Less accurate methods require more grid points.
- If you plan to use interpolation methods, you may also want to be extra careful.
- Another strategy is to use a multigrid method: solve the model with a coarse grid and then use it as a guess to refine the solution.
- Extra advanced references: Maliar and Maliar (2014, Handbook of Computational Econ.); Brumm and Scheidegger (2017, ECTA).

Discretization: Markov Chain

- We must discretize: $s_{t}=\rho s_{t-1}+\sigma \varepsilon_{t}$, where $\varepsilon \sim N(0,1)$, in a discrete Markov Chain with n_{S} points.
- The output will be a grid and a transition matrix:

$$
g_{S}=\left[s_{1}, s_{2}, \ldots, s_{n_{S}}\right]^{\prime}, \quad \text { and } \Pi=\left[\begin{array}{ccc}
\pi_{11} & \pi_{12} & \ldots \\
\vdots & \ddots & \\
\pi_{n_{S} 1} & & \pi_{n_{S} n_{S}}
\end{array}\right]
$$

where the elements of $\Pi_{n_{S} \times n_{S}}$ are the probabilities of going from state i to j :

$$
\pi_{i j}=\operatorname{Prob}\left(s^{\prime}=s_{j} \mid s=s_{i}\right)
$$

- Two standard methods to discretize the AR(1): Tauchen and Rouwenhorst.

Discretization: Tauchen

- References: Tauchen (1986) and Flodén (2008, Econ. Letters).
- Start by choosing (symmetrical) end points using the unconditional standard deviation:

$$
-s_{1}=s_{n_{S}}=m\left(\frac{\sigma^{2}}{1-\rho^{2}}\right)^{\frac{1}{2}}
$$

where $m>0$ is a constant.

- Tauchen uses $m=3$, Floden advocates for $m=1.2 \ln \left(n_{S}\right)$.
- Choose equidistant points between s_{1} and $s_{n_{S}}$.
- Denote d as the distance between points.
- Another option is Gaussian nodes (Tauchen and Hussey, 1991).

Discretization: Tauchen

- Compute the transition probabilities between points using the distribution of ε :

$$
\pi_{i k}= \begin{cases}\Phi\left(\frac{s_{1}-\rho s_{i}+d / 2}{\sigma}\right) & \text { if } k=1 \\ \Phi\left(\frac{s_{k}-\rho s_{i}+d / 2}{\sigma}\right)-\Phi\left(\frac{s_{k}-\rho s_{i}-d / 2}{\sigma}\right) & \text { if } 1<k<n_{S} \\ 1-\Phi\left(\frac{s_{n_{S}}-\rho s_{i}-d / 2}{\sigma}\right) & \text { if } k=n_{S}\end{cases}
$$

where Φ is the CDF of the $N(0,1)$.

- Intuitively, Tauchen approximates the $\operatorname{AR}(1)$ by targeting the conditional distribution of s.
- In general, the method is pretty efficient in matching the $\operatorname{AR}(1)$ with a low n_{S} as long the process is not too close to a unit root.

Tauchen: Intuition

Figure: Distribution of moving from Z_{i} to Z_{j}

Source: Alisdair McKay notes.

Discretization: Rouwenhorst

- If the $\operatorname{AR}(1)$ is too persistent (e.g., $\rho>0.9$), you should use Rouwenhorst. The reference is Kopecky and Suen (2010, RED).
- The idea is to approximate the process to a Markov Chain that converges to the invariant binomial distribution.
- Grid: equidistant and symmetric, with $-s_{1}=s_{n_{S}}=\psi$.
- Using three parameters of the Markov chain (p, q, ψ), the method can match exactly:
- Unconditional mean, variance and first-order correlation of s_{t};
- In the particular example we used, it matches the conditional mean and variance as well.
- Rouwenhorst does not use information about the distribution of ε. As long we are mostly interested in the first two moments, the method should work well.

Rowenhorst: Intuition

- Three parameters (p, q, ψ) in a 2-states Markov Chain:
- States: $g_{s}=[-\psi, \psi] \prime$
- Transition probability:

$$
\Pi=\left[\begin{array}{cc}
p & 1-p \\
1-q & q
\end{array}\right]
$$

- If the variance of the process does not depend on the state: $p=q$.
- Then we have two parameters p and ψ to match two moments, the first-order autocorrelation and the unconditional variance.
- With $n_{s}>2$ states, we can define the transition probability recursively (see Kopecky and Suen).

Comparison: Tauchen vs Rowenhorst

Figure: Tauchen vs Rowenhorst: $n_{S}=5, \rho=0.9$ and $\sigma=0.1$

```
States:
Rouwenhorst: [-0.45883147 -0.22941573 0. 0.22941573 0.45883147]
Tauchen: [-0.6882472 -0.3441236 0. 0.3441236 0.6882472]
Transition Matrix (third row):
Rouwenhorst: [0.00225625 0.085975 0.8235375 0.085975 0.00225625]
Tauchen: [1.22257976e-07 4.26599599e-02 9.14679836e-01 4.26599599e-02
    1.22257976e-07]
Invariant Distribution:
Rouwenhorst: [[0.0625 0.25 0.375 0.25 0.0625]
Tauchen: [0.0304637 0.236133 0.46680659 0.236133 0.0304637 ]
```


Discretization: Advanced Issues

- In the case of non-stationary processes (e.g., life-cycle models), you should adapt the methods. See Fella, Gallipoli and Pan (2019, RED).
- For more general processes such as non-normal, asymmetric distributions, and correlated shocks you may have to use simulation methods. See De Nardi, Fella and Paz-Pardo (2020, JEEA).
- Multivariate processes are also described in Tauchen.
- There is also discretization based on Gauss-Hermite quadrature (see Maliar and Maliar).
- They are often useful if you plan to pre-compute the expectation of the VF as in Judd, the Maliars, and Tsener (2017, QE).

Household Problem

- Once we have discretized the state space, we can solve the household problem using a variety of global methods:
- Value Function Iteration;
- Policy Function Iteration;
- Projection Methods.
- Here I will focus in the first two. If we have time, I may discuss the last one.
- Strictly speaking, projection is just a way to approximate the value/policy function, but it is useful to separate it in a different method.

Value Function Iteration

- Once we have the asset and labor grid, we define the discretized value function on the same grid points: $V\left(a_{i}, s_{j}\right)=V_{i j}$, where V is a $n_{A} \times n_{S}$ array:

$$
V=\left[\begin{array}{cccc}
V_{11} & V_{12} & \ldots & V_{1 n_{S}} \\
\vdots & \ddots & & \\
V_{n_{A} 1} & & \ldots & V_{n_{A} n_{S}}
\end{array}\right]
$$

- Our goal is to solve the following Dynamic Programming problem:

$$
V_{i j}=\max _{a_{k}^{\prime} \geq-\phi}\left\{u\left((1+r) a_{i}+w \exp \left(s_{j}\right)-a_{k}^{\prime}\right)+\beta \sum_{m=1}^{n_{S}} \pi_{j m} V_{k m}\right\}
$$

where the conditional expectation $\mathbb{E}\left[V\left(a^{\prime}, s^{\prime}\right) \mid s\right]=\sum_{m=1}^{n_{S}} \pi_{j m} V_{k m}$.

Value Function Iteration

- We know that under certain conditions Banach Fixed Point Theorem applies, and we can use the following iterative procedure:

1. Guess an initial value function $V_{i j}^{n}$.
2. Compute the continuation value using the conditional expectation $\mathbb{E}\left[V^{n}\left(a_{k}^{\prime}, s^{\prime}\right) \mid s_{j}\right]$.
3. Given the return function and the continuation value, solve the maximization problem to compute the value function $V_{i j}^{n+1}$ for all state space (i, j).
4. Compute the absolute distance: $d=\max _{i, j}\left|V_{i j}^{n+1}-V_{i j}^{n}\right|$. If $d<t o l$, we found V. Otherwise, update the guess $V^{n}=V^{n+1}$ and repeat.

- The slowest part of the procedure is solving the maximization problem.

Value Function Iteration

- Simplest way to solve the maximization problem: brute force using Grid Search.
- Idea: for all (i, j), compute the value function for all next period asset a_{k}^{\prime} and select the one that yields the maximum:

$$
\begin{aligned}
V_{i j, k}^{n+1} & = \begin{cases}u\left((1+r) a_{i}+w \exp \left(s_{j}\right)-a_{k}^{\prime}\right)+\beta \mathbb{E}\left[V^{n}\left(a_{k}^{\prime}, s^{\prime}\right) \mid s_{j}\right], & \text { if } c_{i j, k}>0 \\
-\infty, & \text { if } c_{i j, k} \leq 0\end{cases} \\
V_{i j}^{n+1} & =\max _{k}\left\{V_{i j, 1}^{n+1}, V_{i j, 2}^{n+1}, \ldots, V_{i j, n_{A}}^{n+1}\right\}
\end{aligned}
$$

- Issues:
- Your optimal policy a^{\prime} will be defined on-grid. You should have a lot of points in the asset grid to have a good approximation.
- The Curse of dimensionality bites hard. The method is robust but can be very slow.

Value Function Iteration

- Another way to solve the maximization problem is to interpolate the value function and use a one-dimension optimization algorithm to solve the max.
- Interpolation
- First, interpolate $V^{n}\left(a^{\prime}, s^{\prime}\right)$, then take the conditional expectation.
- This gives a continuous function on a^{\prime} (conditional on s): $\mathbb{E}\left[\hat{V}^{n}\left(a_{k}^{\prime}, s^{\prime}\right) \mid s_{j}\right]=\hat{V}^{n}\left(a^{\prime} ; s_{j}\right)$, where \hat{V} is the interpolated VF.
- Since $u()$ is continuous on a^{\prime}, we can define the continuous function φ :

$$
\varphi\left(a^{\prime} ; a_{i}, s_{j}\right)=u\left((1+r) a_{i}+w \exp \left(s_{j}\right)-a^{\prime}\right)+\beta \hat{V}^{n}\left(a^{\prime} ; s_{j}\right) .
$$

- Optimization

- Then, we can apply standard optimization routines on $\varphi\left(a^{\prime}\right)$ to find the optimal $a^{\prime *}$.
- The value function is $V_{i j}^{n+1}=\varphi\left(a^{\prime *} ; a_{i}, s_{j}\right)$.

Value Function Iteration

Issues:

- Many interpolation algorithms:
- Linear: fast but not differentiable at the nodes.
- Cubic: a bit slower, but differentiable at all points.
- Chebyshev.
- Many optimization algorithms:
- In general, you should use derivative-free methods (Brent's, Golden-search,...).
- You can try (faster) Newton-style methods. Just recall that since they need derivatives, your interpolation algorithm should give you a differentiable VF.
- In comparison to brute force algorithms, interpolate + optimization is slower but significantly more accurate (for the same n_{A}).
- Once you factor that you can get better accuracy with fewer grid points, interpolation can be faster (usually depends on the problem).

Speeding up VFI: Howard's Improvement Algorithm

- Since the maximization step is slowest part, one popular strategy is to "skip" the max in a couple of iterations.
- Say that you just finish iteration n, and you have computed $V_{i j}^{n}$ and the policy $a^{\prime}=g_{i j}^{n}$.
- You can do n_{H} iterations to update V without solving the max and keeping $a^{\prime}=g_{i j}^{n}$ constant instead:

$$
V_{i j}^{n_{H}+1}=u\left((1+r) a_{i}+w \exp \left(s_{j}\right)-g_{i j}^{n}\right)+\beta \mathbb{E}\left[V^{n_{H}}\left(g_{i j}^{n}, s^{\prime}\right) \mid s_{j}\right]
$$

- Once you finish the n_{H}, you can do one regular iteration where you compute the policy function and check convergence for the VF.
- It should work with all VFI methods, but for me, Howard's tend to perform better with interpolation-types of maximization than with pure brute force.

Speeding up VFI: Exploiting Monotonicity and Concavity

- Under certain conditions, we know that the VF is monotone and/or concave.
- We can use this information to reduce the state space where we look for a solution.
- Example: say your VF is monotone in a
- then, for two grids i and j :

$$
a_{i} \geq a j \Rightarrow a_{i}^{\prime}=g_{a}\left(a_{i}\right) \geq g_{a}\left(a_{j}\right)=a_{j}^{\prime} .
$$

- Once we solve for a_{j}, we can reduce the search space for the solution of a_{i}
- Similarly for concavity (see Heer and Maussner, ch. 4).
- To exploit monotonicity, I like to use the divide-and-conquer algorithm by Gordon and Qiu (2018, QE).

Policy Function Methods

- VFI is robust and works under a wide set of conditions: discrete choices, multiple controls, etc.
- But it tends to be very slow and often not very accurate.
- Policy Function Methods (i.e., iteration on the Euler Equation) are fast and accurate, but not as robust.
- Here I will present the Endogenous Grid Method which is likely the most used method to solve consumption-savings problem nowadays.

Endogenous Grid Method

- Let $c=g_{c}(a, s)$ be the consumption policy function. We want to solve the following functional equation:

$$
\begin{aligned}
& c^{-\gamma}=\beta(1+r) \mathbb{E}\left[g_{c}\left(a^{\prime}, s^{\prime}\right)^{-\gamma} \mid s\right] \\
& c^{-\gamma}=\beta(1+r) \mathbb{E}\left[g_{c}\left((1+r) a+w \exp (s)-c, s^{\prime}\right)^{-\gamma} \mid s\right]
\end{aligned}
$$

- Using a guess for g_{c} on the grid, standard methods involve solving for c using interpolation and root-finding method.
- Then, we check if g_{c}^{n} is close enough to c. If it is not, update the guess and keep going.
- As we know, using a non-linear equation solver is costly.
- Carroll (2005) introduces the Endogenous Grid Method, which bypasses the non-linear solver.
- See Barillas and Fernández-Villaverde (2007) for an extension that combines VFI and EGM.

Endogenous Grid Method

1. Guess a consumption policy on an exogenously defined grid: $c=g_{c}^{n}\left(a_{i}, s_{j}\right)$; This is the grid we discretized in the beginning of the algorithm.
2. Use the guess to compute the RHS of the EE (note we iterate on $a_{i}^{\prime}!$):

$$
R H S\left(a_{i}^{\prime}, s_{j}\right)=\beta(1+r) \sum_{m=1}^{n_{s}} \pi_{j m} u^{\prime}\left(g_{c}^{n}\left(a_{i}^{\prime}, s_{m}^{\prime}\right)\right)
$$

3. Invert the marginal utility to find the consumption decision (in t) associated to the state $\left(\hat{a}_{i}, s_{j}\right)$ and asset policy $a_{i}^{\prime}=g_{a}^{n}\left(\hat{a}_{i}, s_{j}\right)$:

$$
\tilde{c}=u^{\prime-1}\left(R H S\left(a_{i}^{\prime}, s_{j}\right)\right) .
$$

This is the "next iteration" consumption policy $\tilde{c}=g_{c}^{n+1}\left(\hat{a}_{i}, s_{j}\right)$.

- But we CANNOT compare $g_{c}^{n+1}\left(\hat{a}_{i}, s_{j}\right)$ with $g_{c}^{n}\left(a_{i}, s_{j}\right)$, since they are defined on DIFFERENT asset grid $\hat{a}_{i} \neq a_{i}$.

Endogenous Grid Method

4. We must redefine the consumption policy, $g_{c}^{n+1}\left(\hat{a}_{i}, s\right)$, in the same grid as $g_{c}^{n}\left(a_{i}, s\right)$. First, you must find the endogenous grid \hat{a}_{i} using the budget constraint:

$$
\hat{a}_{i}=\frac{\tilde{c}\left(a_{i}^{\prime}, s_{j}\right)+a_{i}^{\prime}-w \exp \left(s_{j}\right)}{1+r}
$$

5. Now use the pair of points $\left(g_{c}^{n+1}, \hat{a}_{i}\right)$ to interpolate to find $g_{c}^{n+1}\left(a_{i}, s_{j}\right)$ defined on the exogenous grid.
6. Compute the distance $d=\max _{i, j}\left|g_{c}^{n+1}\left(a_{i}, s_{j}\right)-g_{c}^{n}\left(a_{i}, s_{j}\right)\right|$. If $d<t o l$, we stop. Otherwise update the guess and start over.

Endogenous Grid Method: Borrowing Constraint

- To deal with the borrowing constraint, it is often convenient to interpolate the asset policy instead: $a_{i}^{\prime}=g_{a}\left(\hat{a}_{i}, s_{j}\right)$.
- Then, after you find the interpolated function $g_{a}\left(a_{i}, s_{j}\right)$, you check if the borrowing constraint is binding: $g_{a}\left(a_{i}, s_{j}\right)<a_{1}$.
- If $g_{a}\left(a_{i}, s_{j}\right)<a_{1}$, set $g_{a}\left(a_{i}, s_{j}\right)=a_{1}$;
- If $g_{a}\left(a_{i}, s_{j}\right) \geq a_{1}$, do nothing.
- After this correction, you can recover g_{c}^{n+1} using the budget constraint:

$$
g_{c}^{n+1}\left(a_{i}, s_{j}\right)=(1+r) a_{i}+w \exp \left(s_{j}\right)-g_{a}\left(a_{i}, s_{j}\right),
$$

and proceed as usual.

Endogenous Grid Method: Policy Functions

Endogenous Grid Method: Policy Functions

Endogenous Grid Method: Extra Issues

- Endogenous Labor Supply: As long the labor supply equation has an analytical solution, $n=g_{n}\left(c, s_{j}\right)$, we just need to substitute it in step 4 .
- You may have to use a non-linear solver for the borrowing constraint, but this is just for a few grids.
- Discrete choices and non-convexities: If there is non-convex choice sets the Euler Equation is not sufficient for the solution.
- You must add a step where you check whether the value function is indeed a maximum. See Fella (2014), Iskhakov et al (2017), Druedahl (2020).
- Multiple control variables: See Ludwig and Schön (2018).
- Another fast method but not as popular is the Envelope Condition Method. See Maliar and Maliar (2013).

Euler Equations Errors

- If you want to compare the accuracy of different solution methods, you can compute the Euler Equation errors.
- Define the approximation error, ε, using:

$$
\begin{aligned}
& u^{\prime}\left(c_{t}(1-\varepsilon)\right)=\beta(1+r) \mathbb{E}_{t}\left[u^{\prime}\left(c_{t+1}\right)\right] \\
\Longleftrightarrow & \varepsilon=1-\frac{u^{\prime-1}\left(\beta(1+r) \mathbb{E}_{t}\left[u^{\prime}\left(c_{t+1}\right)\right]\right)}{c_{t}}
\end{aligned}
$$

- One can compute ε using a different grid than the one used to solve the model, or simulate the decisions using a long history of shocks.
- See Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006, JEDC) for an application of the Euler Errors.

Invariant Distribution

- Once we have the policy functions of the HH problem, we can compute the invariant distribution, $\lambda(a, s)$
- A couple of methods:

1. Monte-Carlo simulation;
2. Non-stochastic simulation;
3. Parameterized distributions.

- I will focus on method 2. Method 1 is usually too slow, method 3 is useful with aggregate uncertainty but the implementation is bit cumbersome (see Algan, Allais, and Haan (2008) to learn about it).

Invariant Distribution

- Approximate the density by a histogram over a fixed grid (Young (2010, JEDC)).
- The asset grid has to be sufficiently fine. It does NOT need to be the same as the one used for the VF/policy function.
- The distribution will be stored in an array with $n_{A} * n_{S}$ entries: $\lambda\left(a_{i}, s_{j}\right)$: an histogram.
- It can be a matrix $n_{A} \times n_{S}$ or a vector $n_{A} * n_{S} \times 1$.
- Then, we build a transition function that gives the probability an agent move from state (a, s) to state $\left(a^{\prime}, s^{\prime}\right)$:

$$
\begin{aligned}
& \mathcal{P}\left(a^{\prime}, s^{\prime}, a, s\right)=\operatorname{Prob}\left[\left(a_{t+1}=a^{\prime}, s_{t+1}=s^{\prime}\right) \mid a_{t}=a, s_{t}=s\right] \\
& =\operatorname{Prob}\left[a_{t+1}=a^{\prime} \mid a_{t}=a, s_{t}=s\right] * \operatorname{Prob}\left[s_{t+1}=s^{\prime} \mid s_{t}=s\right]
\end{aligned}
$$

Recall the Intuition

- Suppose we discretize the distribution in two asset states and two income states.
- An entry $\lambda_{t}\left(a_{i}, s_{j}\right)$ is the fraction of agents in state $\left(a_{i}, s_{j}\right)$.
- The matrix \mathcal{P} is the transition matrix that governs the fraction of agents in state $\lambda_{t}\left(a_{i}, s_{j}\right)$ that moves to all states of λ_{t+1} :

$$
\underbrace{\left[\begin{array}{c}
\lambda_{t+1}\left(a_{1}, s_{1}\right) \\
\lambda_{t+1}\left(a_{1}, s_{2}\right) \\
\lambda_{t+1}\left(a_{2}, s_{1}\right) \\
\lambda_{t+1}\left(a_{2}, s_{2}\right)
\end{array}\right]}_{\lambda_{t+1}\left(a^{\prime}, s^{\prime}\right)}=\underbrace{\left[\begin{array}{cccc}
\mathcal{P}_{1,1} & \ldots & \ldots & \mathcal{P}_{1,4} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\mathcal{P}_{4,1} & \ldots & \ldots & \mathcal{P}_{4,4}
\end{array}\right]}_{\mathcal{P}\left(a^{\prime}, s^{\prime}, a, s\right) \prime} \underbrace{\left[\begin{array}{c}
\lambda_{t}\left(a_{1}, s_{1}\right) \\
\lambda_{t}\left(a_{1}, s_{2}\right) \\
\lambda_{t}\left(a_{2}, s_{1}\right) \\
\lambda_{t}\left(a_{2}, s_{2}\right)
\end{array}\right]}_{\lambda_{t}(a, s)}
$$

Invariant Distribution

- Note that the transition function together with the distribution array defines a Markov chain.
- From a distribution $\lambda_{t}(a, s)$, we can compute the mass at node $\left(a_{k}, s_{m}\right)$ in the next period:

$$
\lambda_{t+1}\left(a_{k}, s_{m}\right)=\sum_{i=1}^{n_{A}} \sum_{j=1}^{n_{S}} \lambda_{t}\left(a_{i}, s_{j}\right) \mathcal{P}\left(a_{k}, s_{m}, a_{i}, s_{j}\right)
$$

- Computing $\mathcal{P}\left(a_{k}, s_{m}, a_{i}, s_{j}\right)$ requires the transition matrix for s and the policy function $g_{a}(a, s)$.

$$
\mathcal{P}\left(a_{k}, s_{m}, a_{i}, s_{j}\right)=\underbrace{\operatorname{Prob}\left[a_{t+1}=a_{k} \mid a_{t}=a_{i}, s_{t}=s_{j}\right]}_{\text {Savings Decision }} * \underbrace{\operatorname{Prob}\left[s_{t+1}=s_{m} \mid s_{t}=s_{j}\right]}_{\text {Exogenous Income Shocks }}
$$

Invariant Distribution

- To get $\operatorname{Prob}\left[a_{t+1}=a_{k} \mid a_{t}=a_{i}, s_{t}=s_{j}\right]$, note that the policy function gives $a^{\prime}=g\left(a_{i}, s_{j}\right)$.
- The problem is that a^{\prime} usually lies off-grid. The trick is to allocate some households in the grid below, and some in the grid above in a way to preserve the aggregate mass of assets:

$$
a^{\prime}=p a_{\nu}+(1-p) a_{\nu+1}
$$

where a_{ν} is the grid point just below a^{\prime}.

- $\operatorname{Prob}\left[a_{t+1}=a_{\nu}\right]=p, \operatorname{Prob}\left[a_{t+1}=a_{\nu+1}\right]=1-p$, and $\operatorname{Prob}\left[a_{t+1}=a_{i}\right]=0$ for all other i.

Invariant Distribution

- Multiplying $\operatorname{Prob}\left[a_{t+1}=a_{k} \mid a_{t}=a_{i}, s_{t}=s_{j}\right]$ with Π and we have the transition function \mathcal{P}.
- Since this is just a Markov chain, you can find the stationary distribution by solving a linear system using standard methods: $\lambda \mathcal{P}=\lambda$.
- Note that \mathcal{P} is often a sparse matrix!
- Iteration methods tend to be robust:

1. Guess $\lambda_{n}(a, s)$ (initial guess can be a uniform mass or anything that sums to one).
2. Compute the next period distribution, $\lambda_{n+1}(a, s)$, applying the transition function.
3. Check convergence: $d=\max _{i, j}\left|\lambda_{n+1}\left(a_{i}, s_{j}\right)-\lambda_{n}\left(a_{i}, s_{j}\right)\right|$. If $d<t o l$ finish the iteration; otherwise try again using λ_{n+1} as a guess.

Invariant Distribution

Aggregate Asset Supply

- Once we have the invariant distribution $\lambda(a, s)$, we can compute the aggregate asset supply:

$$
\mathbb{E} a=\sum_{i=1}^{n_{A}} a_{i} \sum_{j=1}^{n_{S}} \lambda\left(a_{i}, s_{i}\right)
$$

- Which together with the capital demand $K(r)$ defines the equilibrium condition.
- We are now ready to define an iterative procedure to find the steady state equilibrium.

Finding the Equilibrium: Algorithm

1. Guess an interest rate, r_{n}.
2. Use the interest rate to compute the capital demand and wage using the firm's optimality condition:

$$
K(r)=\left(\frac{\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N \quad \text { and }, \quad w(r)=(1-\alpha)\left(\frac{K(r)}{N}\right)^{\alpha}
$$

Note that the aggregate labor supply, N, is time invariant and can be computed using the invariant distribution of the labor endowment, μ_{j} :

$$
N=\sum_{j=1}^{n_{S}} s_{j} \mu_{j}
$$

Finding the Equilibrium: Algorithm

3. Given r_{n} and $w\left(r_{n}\right)$, solve the household problem. Denote the policy function as $g_{a}\left(a, s ; r_{n}\right)$.
4. Using the policy function $g_{a}\left(a, s ; r_{n}\right)$ and the law of motion of the shock s, find the stationary distribution $\lambda\left(a, s ; r_{n}\right)$ and the aggregate asset supply:

$$
\mathbb{E} a\left(r_{n}\right)=\sum_{i=1}^{n_{A}} a_{i} \sum_{j=1}^{n_{S}} \lambda\left(a_{i}, s_{i} ; r_{n}\right)
$$

5. Compute the excess demand function:

$$
\Phi(r)=K(r)-\mathbb{E} a(r)
$$

6. if $\left|\Phi\left(r_{n}\right)\right|<t o l$, we found an equilibria. Otherwise, update r and try again.

- If $\Phi(r)<0$, capital demand is too low. Decrease r.
- If $\Phi(r)>0$, capital demand is too high. Increase r.

Finding the Equilibrium

- Finding an equilibrium boils down to finding a root of the excess demand function.
- Usually bracketing methods work well: bisection, Brent's, etc.
- Initial guess: theoretically, good bounds for r are:
- Upper bound: $r_{u}=1 / \beta-1$.
- Lower bound: $r_{l}=-\delta$.
- Alternatively, we can iterate on K (which defines r and w using the firm's foc).
- In this case, we can update the capital guess, K^{n}, using the following strategy:

$$
\begin{equation*}
K^{n+1}=d \mathbb{E} a+(1-d) K^{n} \tag{1}
\end{equation*}
$$

where $d \in(0,1]$ is a dampening parameter.

Model Stats

```
Model Stats:
Eq. wage and interest rate: 1.2872 0.0377
Aggregate Capital and Asset Supply: 7.4249 7.4245
Labor Supply: 1.027
K/L: 7.232
Agg. Output: 1.972
A/Y: 3.764
Fraction of constrained households:: 0.035
Wealth Distribution:
Avg. a: 7.425
Std. a: 6.805
p25 a: 2.106
p50 a: 5.581
p95 a: 20.659
p99 a: 29.097
```


Model Stats

Extensions

- Endogenous labor supply: In case of endogenous labor supply, aggregate labor supply, N_{t}, will change with prices.
- Iterate on capital-labor ratio instead: $k=K / L$.
- Fiscal policy and tax instruments: it involves add an extra condition, the government budget constraint.
- In some cases, it is possible to include inside the loop.
- In more complicated cases, one must include as an extra condition together with the asset market excess demand.
- Other market clearing conditions:
- Must be added in the excess demand loop. One can use multivariate optimization/root-finding algorithms (e.g., simplex), or solve one condition at a time.

