
Advanced Macroeconomics
Computational Aspects of the Aiyagari Model

Tomás R. Martinez

INSPER

1 / 47

References

• Heer and Maussner (2009): Ch. 1, 4, and 7.

• Fehr and Kindermann (2019): Ch. 8 and 9.

• There are online notes by some very smart people: Makoto Nakajima, Alisdair McKay,
Jesús Fernández-Villaverde, Econ-ark, and many others. A big thanks to all of them.

• I will assume that you know basic Dynamic Programming, Value Function Iteration and
Markov chains.

▶ If you need a refresh, check Ljunqvist and Sargent: Ch. 2, 3, and 4.

• An advanced reference: Maliar and Maliar (2014, Numerical Methods for Large-Scale
Dynamic Economic Models).

2 / 47

https://makotonakajima.github.io/comp/
https://alisdairmckay.com/Notes/HetAgents/index.html
https://www.sas.upenn.edu/~jesusfv/teaching.html
https://econ-ark.org/

Baseline Aiyagari Model

• Aggregate production function: Yt = Kα
t N

1−α
t

• Household Problem:

V (a, s) = max
a′≥−ϕ

{u((1 + r)a+ w exp{s} − a′) + βE[V (a′, s′)|s]}

st = ρst−1 + σεt, where ε ∼ N(0, 1)

• We must solve for the interest rate that clears the asset market:∫
A×S

adΛ(a, s) = K

where λ is the invariant distribution and K is the capital demand from the firm’s problem.

3 / 47

Algorithm in a Nutshell

The solution of the problem is characterized by a fixed point:

1. Guess an interest rate r0 (or quantity of capital K0).

2. Using r0 in the solution of the firm’s problem, recover capital demand and the implied
wage.

3. Given w and r0, solve for policy functions of the household.

4. Given the household policy functions’, solve for the invariant distribution.

5. Given the invariant distribution, compute the excess demand function:

Φ(r) =

∫
A×S

adΛ(a, s; r)−K(r),

if Φ(r) = 0, we found equilibrium. Otherwise, update the guess r0 and go back to step 2.

4 / 47

Discretization

• We have to solve the HH problem using global methods.

• The first step is to discretize the state space!

• Trade-off between speed and accuracy: with more gridpoints, you have a more
accurate solution, but it takes more time to solve the problem.

• You must always check that the solution of your model is not affected by the choices you
make regarding the gridpoints!

▶ Sanity check: increase the number of gridpoints and change the boundary of the state space
to check if anything is changing.

5 / 47

Discretization: Assets

• Choose the number of gridpoints nA, the bounds of the state space (a1, anA) and a
discretization method so the grid is:

gA = [a1, a2, ..., anA]
′.

• Bounds: a1 = −ϕ, the upper bound anA must be chosen so it never binds.
▶ A simple trick is to use the steady state k of the Neoclassical Growth Model and multiply by

a constant.

• Gridpoints distance:
▶ Simplest way: equal distance between the gridpoints.
▶ Alternative: include more points in the area with more curvature/kinks. In Aiyagari, this is

closer to the borrowing constraint.

ai = a1 + (anA
− a1)

(1 + ν)i−1 − 1

(1 + ν)nA−1 − 1
for i = 1, 2, ..., nA.

where ν is the growth rate between points.
6 / 47

Discretization: Assets

Figure: Discretization: amin = 0, amax = 250 and nA = 10

7 / 47

Discretization: Assets

• Very often people use the same gridpoints to approximate both the policy functions and
the invariant distribution, but it does NOT to be the case!

• The exact number of gridpoints will depend on the method used to solve for the policy
function and the invariant distribution.

▶ Less accurate methods require more grid points.
▶ If you plan to use interpolation methods, you may also want to be extra careful.

• Another strategy is to use a multigrid method: solve the model with a coarse grid and
then use it as a guess to refine the solution.

• Extra advanced references: Maliar and Maliar (2014, Handbook of Computational
Econ.); Brumm and Scheidegger (2017, ECTA).

8 / 47

Discretization: Markov Chain

• We must discretize: st = ρst−1 + σεt,where ε ∼ N(0, 1), in a discrete Markov Chain with
nS points.

• The output will be a grid and a transition matrix:

gS = [s1, s2, ..., snS]
′, and Π =

 π11 π12 . . .
...

. . .

πnS1 πnSnS

where the elements of ΠnS×nS are the probabilities of going from state i to j:

πij = Prob(s′ = sj |s = si).

• Two standard methods to discretize the AR(1): Tauchen and Rouwenhorst.

9 / 47

Discretization: Tauchen

• References: Tauchen (1986) and Flodén (2008, Econ. Letters).

• Start by choosing (symmetrical) end points using the unconditional standard deviation:

−s1 = snS = m

Å
σ2

1− ρ2

ã 1
2

,

where m > 0 is a constant.

• Tauchen uses m = 3, Floden advocates for m = 1.2 ln(nS).

• Choose equidistant points between s1 and snS .
▶ Denote d as the distance between points.
▶ Another option is Gaussian nodes (Tauchen and Hussey, 1991).

10 / 47

Discretization: Tauchen

• Compute the transition probabilities between points using the distribution of ε:

πik =

Φ

Å
s1 − ρsi + d/2

σ

ã
if k = 1

Φ

Å
sk − ρsi + d/2

σ

ã
− Φ

Å
sk − ρsi − d/2

σ

ã
if 1 < k < nS

1− Φ

Å
snS − ρsi − d/2

σ

ã
if k = nS

where Φ is the CDF of the N(0, 1).

• Intuitively, Tauchen approximates the AR(1) by targeting the conditional distribution of s.

• In general, the method is pretty efficient in matching the AR(1) with a low nS as long the
process is not too close to a unit root.

11 / 47

Tauchen: Intuition

Figure: Distribution of moving from Zi to Zj

Source: Alisdair McKay notes.
12 / 47

Discretization: Rouwenhorst

• If the AR(1) is too persistent (e.g., ρ > 0.9), you should use Rouwenhorst. The reference
is Kopecky and Suen (2010, RED).

• The idea is to approximate the process to a Markov Chain that converges to the invariant
binomial distribution.

• Grid: equidistant and symmetric, with −s1 = snS = ψ.

• Using three parameters of the Markov chain (p, q, ψ), the method can match exactly:
▶ Unconditional mean, variance and first-order correlation of st;
▶ In the particular example we used, it matches the conditional mean and variance as well.

• Rouwenhorst does not use information about the distribution of ε. As long we are mostly
interested in the first two moments, the method should work well.

13 / 47

Rowenhorst: Intuition

• Three parameters (p, q, ψ) in a 2-states Markov Chain:
▶ States: gs = [−ψ,ψ]′
▶ Transition probability:

Π =

ï
p 1− p

1− q q

ò
• If the variance of the process does not depend on the state: p = q.

• Then we have two parameters p and ψ to match two moments, the first-order
autocorrelation and the unconditional variance.

• With ns > 2 states, we can define the transition probability recursively (see Kopecky and
Suen).

14 / 47

Comparison: Tauchen vs Rowenhorst

Figure: Tauchen vs Rowenhorst: nS = 5, ρ = 0.9 and σ = 0.1

15 / 47

Discretization: Advanced Issues

• In the case of non-stationary processes (e.g., life-cycle models), you should adapt the
methods. See Fella, Gallipoli and Pan (2019, RED).

• For more general processes such as non-normal, asymmetric distributions, and correlated
shocks you may have to use simulation methods. See De Nardi, Fella and Paz-Pardo
(2020, JEEA).

• Multivariate processes are also described in Tauchen.

• There is also discretization based on Gauss-Hermite quadrature (see Maliar and Maliar).
▶ They are often useful if you plan to pre-compute the expectation of the VF as in Judd, the

Maliars, and Tsener (2017, QE).

16 / 47

Household Problem

• Once we have discretized the state space, we can solve the household problem using a
variety of global methods:

▶ Value Function Iteration;

▶ Policy Function Iteration;

▶ Projection Methods.

• Here I will focus in the first two. If we have time, I may discuss the last one.

• Strictly speaking, projection is just a way to approximate the value/policy function, but it
is useful to separate it in a different method.

17 / 47

Value Function Iteration

• Once we have the asset and labor grid, we define the discretized value function on the
same grid points: V (ai, sj) = Vij , where V is a nA × nS array:

V =

 V11 V12 . . . V1nS

...
. . .

VnA1 . . . VnAnS

• Our goal is to solve the following Dynamic Programming problem:

Vij = max
a′k≥−ϕ

{
u((1 + r)ai + w exp(sj)− a′k) + β

nS∑
m=1

πjmVkm

}
,

where the conditional expectation E[V (a′, s′)|s] =
∑nS

m=1 πjmVkm.

18 / 47

Value Function Iteration

• We know that under certain conditions Banach Fixed Point Theorem applies, and we can
use the following iterative procedure:

1. Guess an initial value function V n
ij .

2. Compute the continuation value using the conditional expectation E[V n(a′k, s
′)|sj].

3. Given the return function and the continuation value, solve the maximization problem to
compute the value function V n+1

ij for all state space (i, j).

4. Compute the absolute distance: d = maxi,j |V n+1
ij − V n

ij |. If d < tol, we found V .
Otherwise, update the guess V n = V n+1 and repeat.

• The slowest part of the procedure is solving the maximization problem.

19 / 47

Value Function Iteration

• Simplest way to solve the maximization problem: brute force using Grid Search.

• Idea: for all (i, j), compute the value function for all next period asset a′k and select the
one that yields the maximum:

V n+1
ij,k =

®
u((1 + r)ai + w exp(sj)− a′k) + βE[V n(a′k, s

′)|sj], if cij,k > 0

−∞, if cij,k ≤ 0

V n+1
ij =max

k
{V n+1

ij,1 , V n+1
ij,2 , ..., V n+1

ij,nA
}

• Issues:
▶ Your optimal policy a′ will be defined on-grid. You should have a lot of points in the asset

grid to have a good approximation.
▶ The Curse of dimensionality bites hard. The method is robust but can be very slow.

20 / 47

Value Function Iteration

• Another way to solve the maximization problem is to interpolate the value function and
use a one-dimension optimization algorithm to solve the max.

• Interpolation

▶ First, interpolate V n(a′, s′), then take the conditional expectation.
▶ This gives a continuous function on a′ (conditional on s): E[V̂ n(a′k, s

′)|sj] = V̂ n(a′; sj),
where V̂ is the interpolated VF.

▶ Since u() is continuous on a′, we can define the continuous function φ:

φ(a′; ai, sj) = u((1 + r)ai + w exp(sj)− a′) + βV̂ n(a′; sj).

• Optimization
▶ Then, we can apply standard optimization routines on φ(a′) to find the optimal a′∗.
▶ The value function is V n+1

ij = φ(a′∗; ai, sj).

21 / 47

Value Function Iteration

Issues:

• Many interpolation algorithms:
▶ Linear: fast but not differentiable at the nodes.
▶ Cubic: a bit slower, but differentiable at all points.
▶ Chebyshev.

• Many optimization algorithms:
▶ In general, you should use derivative-free methods (Brent’s, Golden-search,...).
▶ You can try (faster) Newton-style methods. Just recall that since they need derivatives, your

interpolation algorithm should give you a differentiable VF.

• In comparison to brute force algorithms, interpolate + optimization is slower but
significantly more accurate (for the same nA).

▶ Once you factor that you can get better accuracy with fewer grid points, interpolation can be
faster (usually depends on the problem).

22 / 47

Speeding up VFI: Howard’s Improvement Algorithm

• Since the maximization step is slowest part, one popular strategy is to “skip” the max in a
couple of iterations.

• Say that you just finish iteration n, and you have computed V n
ij and the policy a′ = gnij .

▶ You can do nH iterations to update V without solving the max and keeping a′ = gnij
constant instead:

V nH+1
ij = u((1 + r)ai + w exp(sj)− gnij) + βE[V nH (gnij , s

′)|sj]

▶ Once you finish the nH , you can do one regular iteration where you compute the policy
function and check convergence for the VF.

• It should work with all VFI methods, but for me, Howard’s tend to perform better with
interpolation-types of maximization than with pure brute force.

23 / 47

Speeding up VFI: Exploiting Monotonicity and Concavity

• Under certain conditions, we know that the VF is monotone and/or concave.

• We can use this information to reduce the state space where we look for a solution.

• Example: say your VF is monotone in a
▶ then, for two grids i and j:

ai ≥ aj ⇒ a′i = ga(ai) ≥ ga(aj) = a′j .

▶ Once we solve for aj , we can reduce the search space for the solution of ai

• Similarly for concavity (see Heer and Maussner, ch. 4).

• To exploit monotonicity, I like to use the divide-and-conquer algorithm by Gordon and Qiu
(2018, QE).

24 / 47

Policy Function Methods

• VFI is robust and works under a wide set of conditions: discrete choices, multiple controls,
etc.

• But it tends to be very slow and often not very accurate.

• Policy Function Methods (i.e., iteration on the Euler Equation) are fast and accurate, but
not as robust.

• Here I will present the Endogenous Grid Method which is likely the most used method
to solve consumption-savings problem nowadays.

25 / 47

Endogenous Grid Method

• Let c = gc(a, s) be the consumption policy function. We want to solve the following
functional equation:

c−γ = β(1 + r)E
[
gc(a

′, s′)−γ |s
]

c−γ = β(1 + r)E
î
gc

(
(1 + r)a+ w exp(s)− c, s′

)−γ |s
ó

• Using a guess for gc on the grid, standard methods involve solving for c using interpolation
and root-finding method.

▶ Then, we check if gnc is close enough to c. If it is not, update the guess and keep going.

• As we know, using a non-linear equation solver is costly.

• Carroll (2005) introduces the Endogenous Grid Method, which bypasses the non-linear
solver.

▶ See Barillas and Fernández-Villaverde (2007) for an extension that combines VFI and EGM.

26 / 47

Endogenous Grid Method

1. Guess a consumption policy on an exogenously defined grid: c = gnc (ai, sj); This is the
grid we discretized in the beginning of the algorithm.

2. Use the guess to compute the RHS of the EE (note we iterate on a′i!):

RHS(a′i, sj) = β(1 + r)

ns∑
m=1

πjmu
′(gnc (a

′
i, s

′
m)).

3. Invert the marginal utility to find the consumption decision (in t) associated to the state
(âi, sj) and asset policy a′i = gna (âi, sj):

c̃ = u′−1(RHS(a′i, sj)).

This is the “next iteration” consumption policy c̃ = gn+1
c (âi, sj).

▶ But we CANNOT compare gn+1
c (âi, sj) with gnc (ai, sj), since they are defined on

DIFFERENT asset grid âi ̸= ai.

27 / 47

Endogenous Grid Method

4. We must redefine the consumption policy, gn+1
c (âi, s), in the same grid as gnc (ai, s). First,

you must find the endogenous grid âi using the budget constraint:

âi =
c̃(a′i, sj) + a′i − w exp(sj)

1 + r

5. Now use the pair of points (gn+1
c , âi) to interpolate to find gn+1

c (ai, sj) defined on the
exogenous grid.

6. Compute the distance d = maxi,j |gn+1
c (ai, sj)− gnc (ai, sj)|. If d < tol, we stop.

Otherwise update the guess and start over.

28 / 47

Endogenous Grid Method: Borrowing Constraint

• To deal with the borrowing constraint, it is often convenient to interpolate the asset policy
instead: a′i = ga(âi, sj).

• Then, after you find the interpolated function ga(ai, sj), you check if the borrowing
constraint is binding: ga(ai, sj) < a1.

▶ If ga(ai, sj) < a1, set ga(ai, sj) = a1;
▶ If ga(ai, sj) ≥ a1, do nothing.

• After this correction, you can recover gn+1
c using the budget constraint:

gn+1
c (ai, sj) = (1 + r)ai + w exp(sj)− ga(ai, sj),

and proceed as usual.

29 / 47

Endogenous Grid Method: Policy Functions

30 / 47

Endogenous Grid Method: Policy Functions

31 / 47

Endogenous Grid Method: Extra Issues

• Endogenous Labor Supply: As long the labor supply equation has an analytical solution,
n = gn(c, sj), we just need to substitute it in step 4.

▶ You may have to use a non-linear solver for the borrowing constraint, but this is just for a
few grids.

• Discrete choices and non-convexities: If there is non-convex choice sets the Euler
Equation is not sufficient for the solution.

▶ You must add a step where you check whether the value function is indeed a maximum. See
Fella (2014), Iskhakov et al (2017), Druedahl (2020).

• Multiple control variables: See Ludwig and Schön (2018).

• Another fast method but not as popular is the Envelope Condition Method. See Maliar
and Maliar (2013).

32 / 47

Euler Equations Errors

• If you want to compare the accuracy of different solution methods, you can compute the
Euler Equation errors.

• Define the approximation error, ε, using:

u′(ct(1− ε)) = β(1 + r)Et[u
′(ct+1)]

⇐⇒ ε = 1− u′−1(β(1 + r)Et[u
′(ct+1)])

ct

• One can compute ε using a different grid than the one used to solve the model, or
simulate the decisions using a long history of shocks.

• See Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006, JEDC) for an application of
the Euler Errors.

33 / 47

Invariant Distribution

• Once we have the policy functions of the HH problem, we can compute the invariant
distribution, λ(a, s)

• A couple of methods:

1. Monte-Carlo simulation;

2. Non-stochastic simulation;

3. Parameterized distributions.

• I will focus on method 2. Method 1 is usually too slow, method 3 is useful with aggregate
uncertainty but the implementation is bit cumbersome (see Algan, Allais, and Haan (2008)
to learn about it).

34 / 47

Invariant Distribution

• Approximate the density by a histogram over a fixed grid (Young (2010, JEDC)).

• The asset grid has to be sufficiently fine. It does NOT need to be the same as the one
used for the VF/policy function.

• The distribution will be stored in an array with nA ∗ nS entries: λ(ai, sj): an histogram.
▶ It can be a matrix nA × nS or a vector nA ∗ nS × 1.

• Then, we build a transition function that gives the probability an agent move from state
(a, s) to state (a′, s′):

P(a′, s′, a, s) = Prob[(at+1 = a′, st+1 = s′)|at = a, st = s]

= Prob[at+1 = a′|at = a, st = s] ∗ Prob[st+1 = s′|st = s],

35 / 47

Recall the Intuition

• Suppose we discretize the distribution in two asset states and two income states.
▶ An entry λt(ai, sj) is the fraction of agents in state (ai, sj).

• The matrix P is the transition matrix that governs the fraction of agents in state λt(ai, sj)
that moves to all states of λt+1:

λt+1(a1, s1)
λt+1(a1, s2)
λt+1(a2, s1)
λt+1(a2, s2)

︸ ︷︷ ︸

λt+1(a′,s′)

=

P1,1 P1,4

...
. . .

...
...

. . .
...

P4,1 P4,4

︸ ︷︷ ︸

P(a′,s′,a,s)′

λt(a1, s1)
λt(a1, s2)
λt(a2, s1)
λt(a2, s2)

︸ ︷︷ ︸

λt(a,s)

36 / 47

Invariant Distribution

• Note that the transition function together with the distribution array defines a Markov
chain.

• From a distribution λt(a, s), we can compute the mass at node (ak, sm) in the next period:

λt+1(ak, sm) =

nA∑
i=1

nS∑
j=1

λt(ai, sj)P(ak, sm, ai, sj)

• Computing P(ak, sm, ai, sj) requires the transition matrix for s and the policy function
ga(a, s).

P(ak, sm, ai, sj) = Prob[at+1 = ak|at = ai, st = sj]︸ ︷︷ ︸
Savings Decision

∗Prob[st+1 = sm|st = sj]︸ ︷︷ ︸
Exogenous Income Shocks

37 / 47

Invariant Distribution

• To get Prob[at+1 = ak|at = ai, st = sj], note that the policy function gives a′ = g(ai, sj).

• The problem is that a′ usually lies off-grid. The trick is to allocate some households in the
grid below, and some in the grid above in a way to preserve the aggregate mass of assets:

a′ = paν + (1− p)aν+1

where aν is the grid point just below a′.

a1 a2 aν aν+1 anA

a
a3

a
′p 1− p

• Prob[at+1 = aν] = p, Prob[at+1 = aν+1] = 1−p, and Prob[at+1 = ai] = 0 for all other i.

38 / 47

Invariant Distribution

• Multiplying Prob[at+1 = ak|at = ai, st = sj] with Π and we have the transition function
P.

• Since this is just a Markov chain, you can find the stationary distribution by solving a
linear system using standard methods: λP = λ.

▶ Note that P is often a sparse matrix!

• Iteration methods tend to be robust:
1. Guess λn(a, s) (initial guess can be a uniform mass or anything that sums to one).

2. Compute the next period distribution, λn+1(a, s), applying the transition function.

3. Check convergence: d = maxi,j |λn+1(ai, sj)− λn(ai, sj)|. If d < tol finish the iteration;
otherwise try again using λn+1 as a guess.

39 / 47

Invariant Distribution

40 / 47

Aggregate Asset Supply

• Once we have the invariant distribution λ(a, s), we can compute the aggregate asset
supply:

Ea =

nA∑
i=1

ai

nS∑
j=1

λ(ai, si)

• Which together with the capital demand K(r) defines the equilibrium condition.

• We are now ready to define an iterative procedure to find the steady state equilibrium.

41 / 47

Finding the Equilibrium: Algorithm

1. Guess an interest rate, rn.

2. Use the interest rate to compute the capital demand and wage using the firm’s optimality
condition:

K(r) =

Å
α

r + δ

ã 1
1−α

N and , w(r) = (1− α)

Å
K(r)

N

ãα
.

Note that the aggregate labor supply, N , is time invariant and can be computed using the
invariant distribution of the labor endowment, µj :

N =

nS∑
j=1

sjµj

42 / 47

Finding the Equilibrium: Algorithm

3. Given rn and w(rn), solve the household problem. Denote the policy function as
ga(a, s; rn).

4. Using the policy function ga(a, s; rn) and the law of motion of the shock s, find the
stationary distribution λ(a, s; rn) and the aggregate asset supply:

Ea(rn) =
nA∑
i=1

ai

nS∑
j=1

λ(ai, si; rn)

5. Compute the excess demand function:

Φ(r) = K(r)− Ea(r),

6. if |Φ(rn)| < tol, we found an equilibria. Otherwise, update r and try again.
▶ If Φ(r) < 0, capital demand is too low. Decrease r.
▶ If Φ(r) > 0, capital demand is too high. Increase r.

43 / 47

Finding the Equilibrium

• Finding an equilibrium boils down to finding a root of the excess demand function.
▶ Usually bracketing methods work well: bisection, Brent’s, etc.

• Initial guess: theoretically, good bounds for r are:
▶ Upper bound: ru = 1/β − 1.
▶ Lower bound: rl = −δ.

• Alternatively, we can iterate on K (which defines r and w using the firm’s foc).
▶ In this case, we can update the capital guess, Kn, using the following strategy:

Kn+1 = dEa+ (1− d)Kn (1)

where d ∈ (0, 1] is a dampening parameter.

44 / 47

Model Stats

45 / 47

Model Stats

46 / 47

Extensions

• Endogenous labor supply: In case of endogenous labor supply, aggregate labor supply,
Nt, will change with prices.

▶ Iterate on capital-labor ratio instead: k = K/L.

• Fiscal policy and tax instruments: it involves add an extra condition, the government
budget constraint.

▶ In some cases, it is possible to include inside the loop.
▶ In more complicated cases, one must include as an extra condition together with the asset

market excess demand.

• Other market clearing conditions:
▶ Must be added in the excess demand loop. One can use multivariate

optimization/root-finding algorithms (e.g., simplex), or solve one condition at a time.

47 / 47

