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References

e Heer and Maussner (2009): Ch. 1, 4, and 7.
e Fehr and Kindermann (2019): Ch. 8 and 9.

e There are online notes by some very smart people: Makoto Nakajima, Alisdair McKay,
Jests Fernandez-Villaverde, Econ-ark, and many others. A big thanks to all of them.

e | will assume that you know basic Dynamic Programming, Value Function lteration and
Markov chains.

> If you need a refresh, check Ljunqvist and Sargent: Ch. 2, 3, and 4.

e An advanced reference: Maliar and Maliar (2014, Numerical Methods for Large-Scale
Dynamic Economic Models).
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https://www.sas.upenn.edu/~jesusfv/teaching.html
https://econ-ark.org/

Baseline Aiyagari Model

e Aggregate production function: Y; = K¢ N}~
e Household Problem:
V(a,s) = arga_x(ﬁ{u((l +1)a +wexp{s} —a’) + BE[V(d', s")|s]}
S¢ = pS¢_1 + 0&y, where ¢ ~ N(0,1)

e \We must solve for the interest rate that clears the asset market:

/ adA(a,s) = K
AXS

where ) is the invariant distribution and K is the capital demand from the firm’s problem.
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Algorithm in a Nutshell

The solution of the problem is characterized by a fixed point:
1. Guess an interest rate ¢ (or quantity of capital Kj).

2. Using 7¢ in the solution of the firm's problem, recover capital demand and the implied
wage.

3. Given w and ryg, solve for policy functions of the household.
4. Given the household policy functions’, solve for the invariant distribution.

5. Given the invariant distribution, compute the excess demand function:
O(r) = / adA(a, s;r) — K(r),
AxS

if ®(r) =0, we found equilibrium. Otherwise, update the guess ry and go back to step 2.
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Discretization

We have to solve the HH problem using global methods.

The first step is to discretize the state spacel

Trade-off between speed and accuracy: with more gridpoints, you have a more
accurate solution, but it takes more time to solve the problem.

You must always check that the solution of your model is not affected by the choices you
make regarding the gridpoints!

» Sanity check: increase the number of gridpoints and change the boundary of the state space
to check if anything is changing.
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Discretization: Assets

e Choose the number of gridpoints n4, the bounds of the state space (a1, ay,) and a
discretization method so the grid is:

gA = [ala A2,y .uey CLnA],.

e Bounds: a; = —¢, the upper bound a,,, must be chosen so it never binds.
» A simple trick is to use the steady state k of the Neoclassical Growth Model and multiply by
a constant.

e Gridpoints distance:
» Simplest way: equal distance between the gridpoints.
» Alternative: include more points in the area with more curvature/kinks. In Aiyagari, this is
closer to the borrowing constraint.

1+v)~t-1
ai:al—l—(am—al)(( +v) fori=1,2,...,n4.

1+v)ma-1l -1

where v is the growth rate between points.
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Discretization: Assets

Figure: Discretization: amin = 0, Gmaer = 250 and ngq = 10
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Discretization: Assets

e Very often people use the same gridpoints to approximate both the policy functions and
the invariant distribution, but it does NOT to be the case!

e The exact number of gridpoints will depend on the method used to solve for the policy
function and the invariant distribution.

» Less accurate methods require more grid points.
» If you plan to use interpolation methods, you may also want to be extra careful.

e Another strategy is to use a multigrid method: solve the model with a coarse grid and
then use it as a guess to refine the solution.

e Extra advanced references: Maliar and Maliar (2014, Handbook of Computational
Econ.); Brumm and Scheidegger (2017, ECTA).
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Discretization: Markov Chain

e We must discretize: s; = ps;—1 + oe, where € ~ N(0,1), in a discrete Markov Chain with

ng points.

e The output will be a grid and a transition matrix:

T 12
i
gs = [51,52, ..., Sngl and IT =

Tngl Tngng
where the elements of II,,, xn are the probabilities of going from state i to j:

mij = Prob(s' = sj|s = s;).

e Two standard methods to discretize the AR(1): Tauchen and Rouwenhorst.
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Discretization: Tauchen

References: Tauchen (1986) and Flodén (2008, Econ. Letters).

Start by choosing (symmetrical) end points using the unconditional standard deviation:

1
—51 = Spg =M ,
1 — p?

where m > 0 is a constant.

Tauchen uses m = 3, Floden advocates for m = 1.21In(ng).

Choose equidistant points between s; and s,,.

» Denote d as the distance between points.
» Another option is Gaussian nodes (Tauchen and Hussey, 1991).
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Discretization: Tauchen

e Compute the transition probabilities between points using the distribution of &:

(I)<s—ps,—i—d/2> ifk=1
Tk = ‘I)(Sk_p51+d/2) @<8k_p82 d/2) |f1<k<n5
1—@(5"5_ —4/2 if k = ng

where @ is the CDF of the N(0,1).

e Intuitively, Tauchen approximates the AR(1) by targeting the conditional distribution of s.

e In general, the method is pretty efficient in matching the AR(1) with a low ng as long the
process is not too close to a unit root.
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Tauchen: Intuition

Figure: Distribution of moving from Z; to Z;
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Source: Alisdair McKay notes.
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Discretization: Rouwenhorst

e If the AR(1) is too persistent (e.g., p > 0.9), you should use Rouwenhorst. The reference
is Kopecky and Suen (2010, RED).

e The idea is to approximate the process to a Markov Chain that converges to the invariant
binomial distribution.

e Grid: equidistant and symmetric, with —s; = s, = 9.

e Using three parameters of the Markov chain (p, g,1), the method can match exactly:

» Unconditional mean, variance and first-order correlation of sy;
> In the particular example we used, it matches the conditional mean and variance as well.

e Rouwenhorst does not use information about the distribution of €. As long we are mostly
interested in the first two moments, the method should work well.
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Rowenhorst: Intuition

Three parameters (p, g, 1) in a 2-states Markov Chain:

» States: g, = [—, )/
» Transition probability:

=L,
1-q ¢

If the variance of the process does not depend on the state: p = q.

e Then we have two parameters p and 1) to match two moments, the first-order
autocorrelation and the unconditional variance.

With ng > 2 states, we can define the transition probability recursively (see Kopecky and
Suen).
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Comparison: Tauchen vs Rowenhorst

Figure: Tauchen vs Rowenhorst: ng =5, p=0.9 and 0 = 0.1

States:
Rouwenhorst: [-08.45883147 -8.22941573 @. 9.22941573 ©8.45883147]
Tauchen: [-8.6882472 -0.3441236 8. 9.3441236 0.6882472]

Transition Matrix (third row):
Rouwenhorst: [0.@0225625 @.885975 B.8235375 ©.885975 8.08225625]
Tauchen: [1.22257976e—-07 4.2659959%e-082 9.14679836e-01 4.26599509e-082

1.22257976e-071]

Invariant Distribution:
Rouwenhorst: [8.0625 8.25 8.375 0.25 0.0625]
Tauchen: [0.0304637 @.236133 0.46680659 2.236133 0.0304637 |
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Discretization: Advanced lIssues

In the case of non-stationary processes (e.g., life-cycle models), you should adapt the
methods. See Fella, Gallipoli and Pan (2019, RED).

e For more general processes such as non-normal, asymmetric distributions, and correlated
shocks you may have to use simulation methods. See De Nardi, Fella and Paz-Pardo
(2020, JEEA).

Multivariate processes are also described in Tauchen.

There is also discretization based on Gauss-Hermite quadrature (see Maliar and Maliar).

» They are often useful if you plan to pre-compute the expectation of the VF as in Judd, the
Maliars, and Tsener (2017, QE).
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Household Problem

e Once we have discretized the state space, we can solve the household problem using a
variety of global methods:

» Value Function lteration;
» Policy Function lteration;

» Projection Methods.
e Here | will focus in the first two. If we have time, | may discuss the last one.

e Strictly speaking, projection is just a way to approximate the value/policy function, but it
is useful to separate it in a different method.
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Value Function lteration

e Once we have the asset and labor grid, we define the discretized value function on the
same grid points: V' (a;, s;) = V;j, where V' is a n4 x ng array:

Vit Vi ... Vipg
v=|: -

Viat oo Vaang

e Our goal is to solve the following Dynamic Programming problem:

ng
Vij = max {U((l +1)a; +wexp(s;) — ay) + B Z ijVkm} ;

m=1

where the conditional expectation E[V (a, s")[s] = Y15 | Tjm Viem.
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Value Function lteration

e We know that under certain conditions Banach Fixed Point Theorem applies, and we can
use the following iterative procedure:

1. Guess an initial value function V7.
2. Compute the continuation value using the conditional expectation E[V"(a},, s')|s;].

3. Given the return function and the continuation value, solve the maximization problem to
compute the value function Vg“ for all state space (i, 7).

4. Compute the absolute distance: d = max; ; |Vi§‘+1 — Vil 1f d < tol, we found V.
Otherwise, update the guess V™ = V" *! and repeat.

e The slowest part of the procedure is solving the maximization problem.
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Value Function lteration

e Simplest way to solve the maximization problem: brute force using Grid Search.

e ldea: for all (7,7), compute the value function for all next period asset aj and select the
one that yields the maximum:

Rl _ {U((l +r)a; +wexp(s;) — ap) + BE[V" (ay, 8')|s;], if cijp >0
ij,k

— 00, if Cijk < 0
n+1 __ n+1 n+1 n+1
Vi =max{ViT Vs, Vin,
e Issues:

» Your optimal policy @’ will be defined on-grid. You should have a lot of points in the asset
grid to have a good approximation.
» The Curse of dimensionality bites hard. The method is robust but can be very slow.
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Value Function lteration

e Another way to solve the maximization problem is to interpolate the value function and
use a one-dimension optimization algorithm to solve the max.

e Interpolation

» First, interpolate V™ (a’, s'), then take the conditional expectation.

> This gives a continuous function on a’ (conditional on s): E[V"(a},s')|s;] = V"(d'; 5;),
where V is the interpolated VF.

» Since u() is continuous on a’, we can define the continuous function ¢:

o(a’;ai, ;) =u((1+7r)a; + wexp(s;) —a’) + 6‘7"(@’; ;).

e Optimization
» Then, we can apply standard optimization routines on ¢(a’) to find the optimal a’*.

> The value function is V'™ = p(a’*; a;, s;).
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Value Function lteration

Issues:

e Many interpolation algorithms:
» Linear: fast but not differentiable at the nodes.
» Cubic: a bit slower, but differentiable at all points.
» Chebyshev.

e Many optimization algorithms:
> In general, you should use derivative-free methods (Brent's, Golden-search,...).

» You can try (faster) Newton-style methods. Just recall that since they need derivatives, your
interpolation algorithm should give you a differentiable VF.

e In comparison to brute force algorithms, interpolate + optimization is slower but
significantly more accurate (for the same ny4).

» Once you factor that you can get better accuracy with fewer grid points, interpolation can be
faster (usually depends on the problem).
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Speeding up VFI: Howard’s Improvement Algorithm

e Since the maximization step is slowest part, one popular strategy is to “skip” the max in a
couple of iterations.

e Say that you just finish iteration n, and you have computed V7 and the policy a = G-

> You can do ny iterations to update V' without solving the max and keeping a’ = g7’
constant instead:

Vit = (1 + r)a; + wexp(s;) — giy) + BEV™ (g5, 5')]s]

» Once you finish the ng, you can do one regular iteration where you compute the policy
function and check convergence for the VF.

e It should work with all VFI methods, but for me, Howard's tend to perform better with
interpolation-types of maximization than with pure brute force.
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Speeding up VFI: Exploiting Monotonicity and Concavity

Under certain conditions, we know that the VF is monotone and/or concave.

e We can use this information to reduce the state space where we look for a solution.

Example: say your VF is monotone in a
» then, for two grids ¢ and j:
ai > aj = a; = ga(ai) > ga(a;) = aj.

» Once we solve for a;, we can reduce the search space for the solution of a;

Similarly for concavity (see Heer and Maussner, ch. 4).

(2018, QE).

To exploit monotonicity, | like to use the divide-and-conquer algorithm by Gordon and Qiu
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Policy Function Methods

e VFl is robust and works under a wide set of conditions: discrete choices, multiple controls,
etc.

e But it tends to be very slow and often not very accurate.

e Policy Function Methods (i.e., iteration on the Euler Equation) are fast and accurate, but
not as robust.

e Here | will present the Endogenous Grid Method which is likely the most used method
to solve consumption-savings problem nowadays.
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Endogenous Grid Method

e Let ¢ = g.(a, s) be the consumption policy function. We want to solve the following
functional equation:
c7T=p(1+rE [gc(a', s')_7|s]
c7=p(1+nrE [gc (1 +7)a+wexp(s) —c,s') " |.s}
e Using a guess for g. on the grid, standard methods involve solving for ¢ using interpolation

and root-finding method.
» Then, we check if g is close enough to c. If it is not, update the guess and keep going.

e As we know, using a non-linear equation solver is costly.

e Carroll (2005) introduces the Endogenous Grid Method, which bypasses the non-linear
solver.
» See Barillas and Fernandez-Villaverde (2007) for an extension that combines VFI and EGM.

26 / 47



Endogenous Grid Method

1. Guess a consumption policy on an exogenously defined grid: ¢ = ¢/'(a;, sj); This is the
grid we discretized in the beginning of the algorithm.

2. Use the guess to compute the RHS of the EE (note we iterate on a}!):

RHS(G’;V%) ﬁ 1+7’ Zﬂ-]mu gc( 17 ;n))

m=1

3. Invert the marginal utility to find the consumption decision (in t) associated to the state
(a;,s;) and asset policy a = g7 (a;, 5;):

¢=u'"Y(RHS(d},s;)).
This is the “next iteration” consumption policy ¢ = g"*1(a;, s;).

» But we CANNOT compare g+ (a;, s;) with g”(as, s;), since they are defined on
DIFFERENT asset grid a; # a;.
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Endogenous Grid Method

4. We must redefine the consumption policy, g% *1(a;, s), in the same grid as g"(a;,s). First,

you must find the endogenous grid a; using the budget constraint:

é(a, sj) + al — wexp(s;)

@ = 1+7r

5. Now use the pair of points (g**!

exogenous grid.

,@;) to interpolate to find g% "1 (a;, s;) defined on the

6. Compute the distance d = max; ; |¢7 " (a;, s;) — g% (ai, s;)|. If d < tol, we stop.
Otherwise update the guess and start over.
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Endogenous Grid Method: Borrowing Constraint

e To deal with the borrowing constraint, it is often convenient to interpolate the asset policy
instead: a = g4(a;, s;).

e Then, after you find the interpolated function g,(a;, s;), you check if the borrowing
constraint is binding: g, (ai,s;) < ai.
> If galai, sj) < a1, set gq(ai,s;) = ar;
» If go(as,sj) > ay, do nothing.

e After this correction, you can recover g”*! using the budget constraint:
90 @i, 55) = (14 1)a; + wexp(s;) — galas, s),

and proceed as usual.
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Endogenous Grid Method: Policy Functions

Consumption Policy Function g¢(a, s) Savings Policy Function ga(a, s)
207 — 5=0.63 2001 — s=0.63
— 5=0.79 — 5=0.79
181 — s=1.00 1757 — s=1.00
— s=1.26 — 5=1.26
1.6 ~ 15.0 A ~
s =158 s =1.58
12.5 1 :
1.4
“ @ 10.0 -
1.2 4
7.5 7
1.0 A 5.0 1
0.8 1 2.51
0.6 L T T T T T 0.0 | T T T T
0 5 10 15 20 0 5 10 15 20
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Endogenous Grid Method: Policy Functions

Savings Policy Function (Zoom)

— 5=0.63
0121 — s=079
— 5=1.00
010 — s=1.26
— s=158
0.08 1
&
0.06 1
0.04 1
0.02 1
0.00 : : :
0.00 0.02 0.04 0.06
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Endogenous Grid Method: Extra Issues

Endogenous Labor Supply: As long the labor supply equation has an analytical solution,
n = gn(c, s;), we just need to substitute it in step 4.

» You may have to use a non-linear solver for the borrowing constraint, but this is just for a
few grids.

Discrete choices and non-convexities: If there is non-convex choice sets the Euler
Equation is not sufficient for the solution.

» You must add a step where you check whether the value function is indeed a maximum. See
Fella (2014), Iskhakov et al (2017), Druedahl (2020).

Multiple control variables: See Ludwig and Schon (2018).

Another fast method but not as popular is the Envelope Condition Method. See Maliar
and Maliar (2013).
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Euler Equations Errors

e If you want to compare the accuracy of different solution methods, you can compute the
Euler Equation errors.

e Define the approximation error, &, using:

u'(er(1—¢€)) = B(L+ r)Eefu'(crs1)]
B+ ) E [ (crq1)])

<— e=1-

e One can compute ¢ using a different grid than the one used to solve the model, or
simulate the decisions using a long history of shocks.

e See Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006, JEDC) for an application of
the Euler Errors.
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Invariant Distribution

e Once we have the policy functions of the HH problem, we can compute the invariant
distribution, A(a, s)
e A couple of methods:
1. Monte-Carlo simulation;
2. Non-stochastic simulation;

3. Parameterized distributions.

e | will focus on method 2. Method 1 is usually too slow, method 3 is useful with aggregate
uncertainty but the implementation is bit cumbersome (see Algan, Allais, and Haan (2008)
to learn about it).
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Invariant Distribution

e Approximate the density by a histogram over a fixed grid (Young (2010, JEDC)).

The asset grid has to be sufficiently fine. It does NOT need to be the same as the one
used for the VF /policy function.

The distribution will be stored in an array with n4 * ng entries: A(a;, s;): an histogram.
» It can be a matrix n4 X ng or a vector ny * ng x 1.

Then, we build a transition function that gives the probability an agent move from state
(a, s) to state (d’,s'):

P(d, s a,s) = Probl(ai41 = d', si11 = §')|ar = a, sy = 5]

= Probla;11 = d'|ay = a,s; = 8] * Prob[s;11 = s'|s; = s,

35 /47



Recall the Intuition

e Suppose we discretize the distribution in two asset states and two income states.
» An entry A(a;, s;) is the fraction of agents in state (a;, s;).

e The matrix P is the transition matrix that governs the fraction of agents in state A\;(a;, s;)

that moves to all states of A\;y1:

Att1(a1, s1) Pia Pra (a1, s1)
Ai+1(ar, s2)| Ae(at, s2)
Att1(az, 1) : A(az, s1)
Ai+1(az, s2) 7);1 ) Pra Ai(az, s2)
Aty1(a’,s’) e as) At(a,s)
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Invariant Distribution

e Note that the transition function together with the distribution array defines a Markov
chain.

e From a distribution A(a, s), we can compute the mass at node (ay, s,,) in the next period:

na ns

Ait1(@k,s Sm) 5 § (@i, s5)P(ak, Sm, @i, 55)

i=1 j=1

e Computing P(ak, Sm, @i, sj) requires the transition matrix for s and the policy function
ga(a, s).

P(ak, Sm, ai, sj) = Problai11 = agla; = a;, ¢ = 55| % Prob[si11 = sm|st = sj]

~~

~
Savings Decision Exogenous Income Shocks
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Invariant Distribution

e To get Probla;41 = aglar = a;, sy = s;|, note that the policy function gives a’ = g(a;, s;).

e The problem is that a’ usually lies off-grid. The trick is to allocate some households in the
grid below, and some in the grid above in a way to preserve the aggregate mass of assets:

a’ = pay + (1 = p)ayt

where a, is the grid point just below a’.

: : : | : . > a
a1 as as " a, Gyl Ony
A 4
\
N /

e Problaiy1 = a,] = p, Problai+1 = ay4+1] =1 —p, and Probla;+1 = a;] = 0 for all other i.
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Invariant Distribution

e Multiplying Probla;+1 = ag|a; = ai, sy = s;] with II and we have the transition function

P.

e Since this is just a Markov chain, you can find the stationary distribution by solving a
linear system using standard methods: AP = \.

» Note that P is often a sparse matrix!

e |teration methods tend to be robust:

1.

2.

Guess A\, (a, s) (initial guess can be a uniform mass or anything that sums to one).
Compute the next period distribution, A,,11(a, s), applying the transition function.

Check convergence: d = max; j [Ant1(ai, $;) — An(as, ;)| If d < tol finish the iteration;
otherwise try again using A\, 11 as a guess.
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Invariant Distribution

Invariant Distribution
0.0010
—— smin
— S mMax
0.0008
0.0006 -
2
@
=
)]
=]
0.0004 4
0.0002 4
0.0000 = T T : ;
10 20 30 40

50

40/ 47



Aggregate Asset Supply

e Once we have the invariant distribution A(a, s), we can compute the aggregate asset
supply:
na ns
Ea = Z a; Z Aag, ;)
i=1  j=1

e Which together with the capital demand K (r) defines the equilibrium condition.

e We are now ready to define an iterative procedure to find the steady state equilibrium.
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Finding the Equilibrium: Algorithm

1. Guess an interest rate, r,.

2. Use the interest rate to compute the capital demand and wage using the firm’'s optimality
condition:

K(r) = <ri5)11‘*N and . w(r)=(1—a) <[i§’”))a

Note that the aggregate labor supply, IV, is time invariant and can be computed using the
invariant distribution of the labor endowment, p;:

ng
N =D sit;
j=1
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Finding the Equilibrium: Algorithm

3. Given r,, and w(ry), solve the household problem. Denote the policy function as

ga(a7 S5 Tn)-

4. Using the policy function g,(a, s;7,) and the law of motion of the shock s, find the
stationary distribution A(a, s;7,,) and the aggregate asset supply:

na ng
Ea(r,) = Z a; Z Mag, 8i577)
i=1 =1

5. Compute the excess demand function:
o(r) = K(r) — Ea(r),

6. if |®(r,)| < tol, we found an equilibria. Otherwise, update r and try again.

» If &(r) < 0, capital demand is too low. Decrease r.
» If &(r) > 0, capital demand is too high. Increase r.
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Finding the Equilibrium

e Finding an equilibrium boils down to finding a root of the excess demand function.
» Usually bracketing methods work well: bisection, Brent's, etc.

e Initial guess: theoretically, good bounds for r are:
» Upper bound: r, =1/8 — 1.
» Lower bound: r; = —4.

o Alternatively, we can iterate on K (which defines r and w using the firm's foc).
» In this case, we can update the capital guess, K", using the following strategy:

K" = dEa + (1 — d)K" (1)

where d € (0, 1] is a dampening parameter.
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Model Stats

Model Stats:

Eq. wage and interest rate: 1.2872 0.8377
Aggregate Capital and Asset Supply: 7.4249 7.4245
Labor Supply: 1.827

KsL: 7.232

Agg. Output: 1.972

AJY: 3.764

Fraction of constrained households:: @.@35

Wealth Distribution:
Avg. a: 7.425
S5td. a: 6.8@5
p25 a: 2.106
p5@ a: b5.581
F95 a: 20.659
F99 a: 29.897




Model Stats

MPC

Marginal Propensities to Consume
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Extensions

e Endogenous labor supply: In case of endogenous labor supply, aggregate labor supply,
Ny, will change with prices.

> lterate on capital-labor ratio instead: k = K/L.

e Fiscal policy and tax instruments: it involves add an extra condition, the government
budget constraint.

» |n some cases, it is possible to include inside the loop.
» In more complicated cases, one must include as an extra condition together with the asset
market excess demand.

e Other market clearing conditions:

» Must be added in the excess demand loop. One can use multivariate
optimization/root-finding algorithms (e.g., simplex), or solve one condition at a time.
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