Advanced Macroeconomics Problem Set 3

1. (The Hopenhayn \& Rogerson Model). Consider the Hopenhayn \& Rogerson model. Every period the representative household decides how much to consume and how much labor to supply to the market. The problem is summarized as:

$$
\begin{equation*}
\max _{C, N} \ln C-A N \quad \text { s.t. } \quad p c=N+\Pi+T . \tag{1}
\end{equation*}
$$

The solution is given by: $C=1 / A p$ and $N=1 / A-\Pi-T$, where Π is the aggregate profits and T is the aggregate tax revenue.
Incumbent firms produce the final good y according to the following production function: $y=z n^{\alpha}$, where n denotes the labor hired by the firm. They are subject to a per-period fixed $\operatorname{cost} c_{f}$ and a firing $\operatorname{tax} g\left(n_{t}, n_{t-1}\right)=\tau \max \left\{0, n_{t-1}-n_{t}\right\}$. The productivity, z, follows an AR(1):

$$
\log z_{t}=\mu(1-\rho)+\rho \log z_{t-1}+\sigma \varepsilon_{t} \quad \varepsilon \sim N(0,1)
$$

At the beginning of the period, before the realization of z, incumbents decide whether to continue operations or exit. In case the firm decides to exit, it receives $-g\left(0, n_{t-1}\right)$ this period and 0 in all the others. The value function of incumbent reads:

$$
V(z, n ; p)=\max _{n^{\prime}}\left\{p z\left(n^{\prime}\right)^{\alpha}-n^{\prime}-p c_{f}-g\left(n^{\prime}, n\right)+\beta \max \left[-g\left(0, n^{\prime}\right), \mathbb{E}_{z^{\prime} \mid z} V\left(z^{\prime}, n^{\prime} ; p\right)\right]\right\}
$$

where p is the price of the final good, and the wage, w, is normalized to one. Denote the firm's policy function as $n^{\prime}=n^{d}(z, n)$ and $\chi=\{0,1\}$, where $\chi=1$ denotes the exit decision.
Potential entrants are ex-ante identical. They must pay an entry cost, c_{e}, and start producing in the next period. They draw their productivity from the distribution $G(z)$. Let $M \geq 0$ be the mass of entrants, the free entry condition implies that in equilibrium:

$$
\begin{equation*}
V^{e}(p)=\beta \int V(z, 0 ; p) d G(z)-c_{e} \leq 0 \tag{2}
\end{equation*}
$$

with equality whenever the mass of entrants is positive, $M>0$.
We solve for the stationary equilibrium, the equilibrium where prices are constant and there is an invariant distribution $\mu(z, n)$ over the employment-productivity space. The market clearing conditions of the goods and labor market are:

$$
\begin{align*}
& Y=\int z\left(n^{\prime}(z, n)\right)^{\alpha}-c_{f} d \mu(z, n)=C \tag{3}\\
& N=L^{d}+M c_{e} . \tag{4}
\end{align*}
$$

(a) Outline a computational algorithm to find a stationary competitive equilibrium of the model.
(b) Solve the model in the computer using the following parameters: $\alpha=2 / 3, \beta=0.8$, $A=0.01, c_{e}=20.0, c_{f}=20.0, \rho=0.9, \sigma=0.2$ and $\mu=1.0$. Discretize the productivity process using the Tauchen algorithm. Make sure to have enough nodes (i.e., $n_{z} \geq 45$).
The employment grid is discretized between $n_{n, 1}=0$ and $n_{n, \max }=10000$. An easy way to discretize the employment space is to assume a vector of the type:

$$
g_{N}=[0(1) 20 ; 22(2) 100 ; 105(5) 500 ; 550(50) 1000 ; 1100(100) 5000 ; 5500(500) 10000]^{\prime}
$$

where the number inside the () denotes the step size between grid points. ${ }^{1}$
Solve the model for $\tau=0.1$ and show: (i) the average firm size; (ii) the average firm productivity; (iii) exit/entry rate; and (iv) the average misallocation of the economy, where misallocation of firm i is defined as

$$
\text { misalloc }_{i}=\frac{\left|M P N_{i}-1 / p\right|}{1 / p}
$$

and $M P N_{i}$ is the marginal product of labor.
(c) Solve the model again for no $\operatorname{tax} \tau=0.0$ and a high firing $\operatorname{tax} \tau=0.5$ how misallocation has changed in the economy?
(d) Solve the model for a low persistence productivity process $\rho=0.5$. Compute the statistics for the three cases: $\tau=(0.0 ; 0.1 ; 0.5)$. How does the persistence of the stochastic process matter for the impact of the firing tax?
2. (Labor Tax in the Hopenhayn Model). Consider the standard Horpenhayn \& Rogerson model presented in the previous question. The parameter's values are the same as the previous question.
Suppose there is a government deciding between two types of taxes: a firing tax as modeled in the previous question, or a traditional labor tax of τ_{n} of the equilibrium wage. The value function of the incumbents read:

$$
V(z, n ; p)=\max _{n^{\prime}}\left\{p z\left(n^{\prime}\right)^{\alpha}-n^{\prime}\left(1+\tau_{n}\right)-p c_{f}-g\left(n^{\prime}, n\right)+\beta \max \left[-g\left(0, n^{\prime}\right), \mathbb{E}_{z^{\prime} \mid z} V\left(z^{\prime}, n^{\prime} ; p\right)\right]\right\}
$$

The government already has a firing tax in place and it is thinking about whether to move to the other tax scheme. The reform should be revenue-neutral, i.e, it should yield the same tax revenue as before.
(a) Solve the model without the labor tax, $\tau_{n}=0.0$, but with a firing tax of $\tau=0.1$. Report the aggregate tax revenue, the aggregate output, average misallocation, average productivity, and the equilibrium price.

[^0](b) Shut down the firing tax $\tau=0.0$. Find the labor $\operatorname{tax} \tau_{n}>0$ that yields the same aggregate tax revenue (if it exists). ${ }^{2}$ Report the aggregate output, average misallocation, average productivity, and the equilibrium price. What is the tax scheme that maximizes aggregate output?

[^1]
[^0]: ${ }^{1}$ For instance, $[0(1) 3 ; 4(2) 10]=[0,1,2,3,4,6,8,10]$.

[^1]: ${ }^{2}$ You can find it by trying different taxes rates or can write a root-finding function. Note that an exact tax rate may be hard to find because of the grid approximation. In this case, feel free to report an approximation.

